

e

 SmartSet™

Touchscreen Controller Family

Technical Reference Manual

Manual Version 2.0

Copyright © 1993, 2002
by

Elo TouchSystems, Inc.
6500 Kaiser Drive

Fremont, CA 94555, USA

1-510-739-5016

www.elotouch.com

All rights reserved.

P/N 676553-000 DOC # SW000027

ii

Trademark Acknowledgements

IntelliTouch, AccuTouch, CarrollTouch, and MonitorMouse are registered trademarks, and COACh, COACh IIs,
SecureTouch, iTouch, ELODEV, TouchUp, TouchBack, and SmartSet are trademarks of Elo TouchSystems, Inc. All other
trademarks are the property of their respective holders.

Copyright

Copyright © 1993, 2002 by Elo TouchSystems, Inc. All rights reserved. Reproduction, adaptation, or translation without
prior written permission is prohibited, except as allowed under copyright laws. Printed in USA.

Limited Warranty

(a) Elo TouchSystems, Inc., ("Seller") warrants to Buyer that the Products (i) shall be free of defects in materials and
workmanship for three (3) years from the date of shipment for touchscreen components and controllers and one (1) year
from the date of shipment for touchmonitors (each a "Warranty Period"), (ii) shall conform to Seller's specifications for
such Products throughout the applicable Warranty Period, and (iii) shall be free of liens and encumbrances when shipped
to Buyer. If Seller agrees in writing to provide and does provide system design, drawings, technical advice, or any other
services to Buyer in connection with Products, then Seller further warrants to Buyer during the applicable Warranty Period
that such services shall be undertaken in accordance with Seller's reasonable technical judgment based on Seller's
understanding of pertinent technical data as of the date of performance of such services. Seller's warranties will not apply
to any Product with respect to which there has been (i) improper installation or testing, (ii) failure to provide a suitable
operating environment, (iii) use of the Product for purposes other than that for which it was designed, (iv) failure to
monitor or operate in accordance with applicable Seller specifications and good industry practice, (v) unauthorized
attachment or removal or alteration of any part, (vi) unusual mechanical, physical or electrical stress, (vii) modifications or
repairs done by other than Seller, or (viii) any other abuse, misuse, neglect or accident. In no circumstance shall Seller
have any liability or obligation with respect to expenses, liabilities or losses associated with the installation or removal of
any Product or the installation or removal of any components for inspection, testing or redesign occasioned by any defect
or by repair or replacement of a Product.

(b) Seller makes no warranty regarding the model life of monitors. Seller's suppliers may at any time and from time to time
make changes in the monitors delivered as Products or components.

(c) Buyer shall notify Seller in writing promptly (and in no case later than thirty (30) days after discovery) of the failure of
any Product to conform to the warranty set forth above, shall describe in commercially reasonable detail in such notice the
symptoms associated with such failure, and shall provide to Seller the opportunity to inspect such Products as installed, if
possible. The notice must be received by Seller during the Warranty Period for such Product. Unless otherwise directed in
writing by Seller, within thirty (30) days after submitting such notice, Buyer shall package the allegedly defective Product
in its original shipping carton(s) or a functional equivalent and shall ship it to Seller at Buyer's expense and risk.

(d) Within a reasonable time after receipt of the allegedly defective Product and verification by Seller that the Product fails
to meet the warranty set forth above, Seller shall correct such failure by, at Seller's option, either (i) modifying or repairing
the Product or (ii) replacing the Product. Such modification, repair or replacement and the return shipment of the Product
with minimum insurance to Buyer shall be at Seller's expense. Buyer shall bear the risk of loss or damage in transit, and
may insure the Product. Buyer shall reimburse Seller for transportation costs incurred for Products returned but found by
Seller not to be defective. Modification or repair of Products may, at Seller's option, take place either at Seller's facilities
or at Buyer's premises. If Seller is unable to modify, repair or replace a Product to conform to the warranty set forth above,
then Seller shall, at Seller's option, either refund to Buyer or credit to Buyer's account the purchase price of the Product
less depreciation calculated on a straight-line basis over Seller's stated useful life of the Product (three years for
touchscreen components and controllers and one year for touchmonitors). THESE REMEDIES SHALL BE BUYER'S
EXCLUSIVE REMEDIES FOR BREACH OF WARRANTY.

(e) EXCEPT FOR THE EXPRESS WARRANTY SET FORTH ABOVE, SELLER GRANTS NO OTHER
WARRANTIES, EXPRESS OR IMPLIED, BY STATUTE OR OTHERWISE, REGARDING THE PRODUCTS, THEIR
FITNESS FOR ANY PURPOSE, THEIR QUALITY, THEIR MERCHANTABILITY, THEIR NONINFRINGEMENT,
OR OTHERWISE. NO EMPLOYEE OF SELLER OR ANY OTHER PARTY IS AUTHORIZED TO MAKE ANY
WARRANTY FOR THE GOODS OTHER THAN THE WARRANTY SET FORTH HEREIN. SELLER'S LIABILITY
UNDER THE WARRANTY SHALL BE LIMITED TO A REFUND OF THE PURCHASE PRICE OF THE PRODUCT.
IN NO EVENT SHALL SELLER BE LIABLE FOR THE COST OF PROCUREMENT OR INSTALLATION OF
SUBSTITUTE GOODS BY BUYER OR FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT OR INCIDENTAL
DAMAGES.

(f) Buyer assumes the risk and agrees to indemnify Seller against and hold Seller harmless from all liability relating to (i)
assessing the suitability for Buyer's intended use of the Products and of any system design or drawing and (ii) determining
the compliance of Buyer's use of the Products with applicable laws, regulations, codes and standards. Buyer retains and
accepts full responsibility for all warranty and other claims relating to, or arising from, Buyer's Products which include or
incorporate Products or components manufactured or supplied by Seller. Buyer is solely responsible for any and all

iii

representations and warranties regarding the Products made or authorized by Buyer. Buyer will indemnify Seller and hold
Seller harmless from any liability, claims, loss, cost or expenses (including reasonable attorneys' fees) attributable to
Buyer's products or representations or warranties concerning same.

(g) This manual may contain reference to, or information about, Elo products (equipment or programs), that are not now
available. Such references or information must not be construed to mean that Elo intends to provide such products,
programming, or services.

FCC Notice

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device
may not cause harmful interference, and (2) this device must accept any interference received, including interference that
may cause undesired operation.

UL Notice

Elo PC-Bus controllers are for use only with IBM or compatible UL Listed personal computers that have installation
instructions detailing user installation of card cage accessories.

Software License Agreement

BY OPENING THE ACCOMPANYING DISKETTE ENVELOPE, YOU ARE AGREEING TO BECOME BOUND BY
THE TERMS OF THIS AGREEMENT, INCLUDING THIS SOFTWARE LICENSE AND LIMITED WARRANTY.

Software License

This software is protected by both the United States copyright law and international treaty provisions. Therefore, except as
noted below, you should treat the software just like any other copyrighted material. Elo TouchSystems, Inc. (Elo)
authorizes you to make archival copies of the software for the purposes of backing-up your software and protecting your
investment from loss, and to make additional copies for use within a single company or facility.

THIS SOFTWARE IS LICENSED FOR USE ONLY WITH ELO TOUCHSCREENS.

The enclosed software program object code (drivers, utilities, diagnostics, and/or demonstration programs) may be freely
duplicated or distributed without charge, but may not be resold. You may not decompile, reverse assemble, reverse
engineer, or patch any software program object codes.

Any supplied software program source code is proprietary and may not be disclosed to third parties. Such source code may
be modified and/or partially or completely incorporated into your own applications, together with any supplied object
code, and the resulting programs may be used, given away or sold without additional licenses or fees.

You may not reproduce, distribute, or revise the program documentation without expressed written consent from Elo.

This software and accompanying written materials may contain reference to, or information about, Elo products
(equipment or programs), that are not now available. Such references or information must not be construed to mean that
Elo intends to provide such products, programming, or services.

Limited Warranty

THIS SOFTWARE AND ACCOMPANYING WRITTEN MATERIALS ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND. FURTHER, ELO DOES NOT GUARANTEE, OR MAKE ANY REPRESEN-TATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR ACCOMPANYING WRITTEN
MATERIALS IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY OR CURRENTNESS. IF THE
INCLUDED SOFTWARE OR ACCOMPANYING WRITTEN MATERIALS ARE DEFECTIVE, YOU, AND NOT ELO
OR ITS DEALERS, DISTRIBUTORS, AGENTS, OR EMPLOYEES, ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR, OR CORRECTION. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF
THE SOFTWARE AND ANY FURTHER PROGRAMS OR WRITTEN MATERIALS DEVELOPED UTILIZING
THESE MATERIALS IS ASSUMED BY YOU.

Elo warrants only that the diskette is free from defects in material and workmanship under normal use and service for a
period of sixty (60) days after receipt.

Elo's entire liability and your exclusive remedy as to the diskette shall be, at Elo's option, either return of the purchase
price or replacement of the diskette.

iv

EXCEPT AS PROVIDED ABOVE, ELO DISCLAIMS ALL WARRANTIES, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, WRITTEN MATERIALS OR DISKETTE. IN NO
EVENT SHALL ELO BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND.

Governing Law

This Agreement shall be governed by and construed in accordance with the laws of the State of California.

v

Contents

Chapter 1 - Introduction ... 1

SmartSet Controllers and Features .. 1

AccuTouch E271-2210 Serial Controller ... 2

AccuTouch E271-2201 PC-Bus Controller .. 2

IntelliTouch 2500S Serial Controller .. 3

Theory of Operation ... 3

The AccuTouch Touchscreen .. 3

The IntelliTouch Touchscreen ... 5

About this Manual ... 7

Chapter 2 - Controller Jumper Settings .. 9

General Information .. 9

Selecting Power-On Settings with Jumpers ... 10

Selecting Power-On Settings from NVRAM ... 10

E271-2210 Serial Controller ... 12

Selecting the Data Transmission Rate .. 14

Selecting the Data Format ... 14

Hardware Handshaking ... 15

Choosing Single-Point or Stream Modes ... 15

Emulation Mode ... 15

Reserved Jumpers ... 16

E271-2201 PC-Bus Controller .. 17

Selecting the Base I/O Port ... 18

Selecting the Interrupt (IRQ) .. 19

Choosing Single-Point or Stream Modes ... 20

Selecting the Touchscreen Type ... 20

Emulation Mode ... 20

8- and 12-Bit Modes .. 21

Reserved Jumpers ... 21

2500S Serial Controller .. 22

Set NVRAM to Defaults on Power Up.. 22

E281A-4002 Emulation Mode .. 23

Chapter 3 - Installation and Connections ... 25

E271-2210 Serial Controller ... 26

Installation.. 26

Connections ... 26

E271-2201 PC-Bus Controller .. 30

Installation.. 30

Connections ... 31

2500S Serial Controller .. 32

Installation.. 32

Connections ... 32

Diagnostic LEDs ... 35

E271-2210 Controller ... 35

E271-2201 Controller ... 35

2500S Controller .. 36

vi

Chapter 4 - SmartSet Tutorial .. 37

Introduction to the SMARTSET Program ... 37

Running SMARTSET.. 38

Main Menu Categories ... 40

Sample SMARTSET Session ... 41

Enabling Touch Reporting ... 42

Changing the Touch Mode .. 42

Calibration .. 42

Scaling ... 46

Saving the Setup ... 46

Programming Multiple Controllers .. 47

Where to Go From Here ... 48

Chapter 5 - Software Interface ... 49

Packet Structure ... 49

Commands and Responses .. 50

Commands and Acknowledgements ... 50

Interface Specifics .. 53

Serial Controllers ... 53

Bus Controllers .. 57

Sample Driver Code ... 59

Example1 - Display Controller Defaults and Raw Touch Coordinates 60

Example2 - Calibrate and Finger Paint .. 62

PACKET.C - Interface-Independent Driver Code 66

SERIAL.C - Machine-Independent Serial Driver Code 68

BUS.C - PC-Bus Code ... 70

Interrupt-Driven Code .. 72

Chapter 6 - Command Reference .. 73

Introduction ... 73

Terms .. 73

Notation ... 74

Reserved Bytes ... 74

Command Descriptions .. 74

Acknowledge ('a') ... 75

Report ('B','b') .. 77

Calibration ('C','c') .. 78

Diagnostics ('D','d') ... 81

Emulate ('E','e') - Serial Controllers Only ... 84

Filter ('F','f') .. 86

Configuration ('g') ... 88

Timer ('H','h') .. 89

ID ('i') .. 90

Jumpers ('j') ... 92

Key ('K','k') - Serial Controllers Only .. 94

Low Power ('L','l') ... 95

Mode ('M','m') ... 96

Nonvolatile RAM ('N') ... 100

Owner ('o') ... 101

vii

Parameter ('P','p') .. 102

Quiet ('Q','q') .. 106

Reset ('R') .. 107

Scaling ('S','s') .. 108

Touch ('t') ... 110

Appendix A - Optional Software Protocols ... 113

E271-2210 Controller ... 113

SmartSet ASCII Mode ... 114

E271-140 and E281A-4002 Emulation .. 114

E261-280 Emulation .. 116

2500S Controller .. 116

E281A-4002 Emulation .. 116

E271-2201 Controller ... 116

E271-141 Emulation .. 116

Appendix B - Calibration and Scaling Algorithms 121

Appendix C - Specifications ... 125

viii

Figures

Figure 1-1. AccuTouch Touchscreen .. 4

Figure 1-2. IntelliTouch Touchscreen .. 6

Figure 2-1. Jumpering SmartSet Controllers ... 10

Figure 2-2. E271-2210 Serial Controller .. 12

Figure 2-3. E271-2201 PC-Bus Controller .. 17

Figure 2-4. 2500S Serial Controller ... 22

Figure 3-1. P2 Serial Connector Pin Positions, End View ... 28

Figure 3-2. P3 Connector Pin Positions, End View ... 29

Figure 3-3. P4 Power Supply Connector Pin Positions, End View 33

Figure 3-4. P2 Serial Connector Pin Positions, End View ... 33

Figure 3-5. P3 Touchscreen Connector Pin Positions, End View 35

Figure 4-1. SmartSet Utility Interface Selection .. 38

Figure 4-2. SmartSet Utility Jumper Settings Display .. 39

Figure 4-3. SmartSet Utility Main Menu .. 39

Figure 4-4. SmartSet Utility Touch Testing Display ... 42

Figure 4-5. Calibration Point Coordinates ... 44

Figure 5-1. SmartSet Utility ASCII Setup Display with Touch Packets 52

Figure 5-2. SmartSet Utility ASCII Setup Showing Mode Query 52

Figure 5-3. Example Code Organization ... 59

Figure 5-4. EXAMPLE1.C Output .. 60

Figure 5-5. EXAMPLE2.C Calibration Screen ... 62

Figure 5-6. EXAMPLE2.C Calibration Results Output... 62

Figure 5-7. EXAMPLE2.C Finger Painting .. 63

1

1

Introduction

 SmartSet Controllers and Features 1

 Theory of Operation 3

 About this Manual 7

The SmartSet™ controller family is designed for use with Elo TouchSystems

touchscreens. SmartSet controllers provide the drive signals for the touchscreen,

convert the received analog signals into digital touch coordinates, and send them

to the host computer. These controllers are the result of twenty years of experience

in controller engineering at Elo.

SMARTSET CONTROLLERS AND FEATURES

The following controllers make up the SmartSet controller family.

 E271-2200 AccuTouch serial RS-232 controller (obsolete)
 E271-2210 AccuTouch serial RS-232 controller
 E271-2201 AccuTouch PC-Bus controller
 E271-2202 AccuTouch Micro Channel controller (obsolete)
 2500S IntelliTouch serial RS-232 controller

2 Chapter 1 - Introduction

Features of SmartSet controllers include:

 Sophisticated command set and communication protocol consistent among the

SmartSet controllers.

 Support for all AccuTouch® or IntelliTouch® touchscreens.

 High speed -- can transmit over 200 coordinates per second.

 Bi-directional communication with acknowledgements.

 On-board calibration and scaling of touch coordinates, untouch detection

(lifting of the finger), and programmable coordinate output rate.

 Configuration options can be stored in nonvolatile RAM (NVRAM) or set

with jumpers.

 Advanced four-layer surface-mount design for small size and low profile.

CMOS circuitry insures low power consumption. Custom ASICs enhance

reliability. Full power and ground planes enhance noise immunity and radio

frequency interference (RFI) immunity. Analog input filters also eliminate

electrical noise from the display. Rugged bipolar transistors are used to drive

the touchscreen and the output stage is protected by Raychem PolySwitches.

Linearity is preserved with a ratiometric measurement subsystem.

 Electrically and 100% functionally tested with a microprocessor-controlled

automated test set.

 On-board diagnostics and LED status indicators.

AccuTouch E271-2210 Serial Controller

 Built around Elo’s COACh™ (Controller-On-A-Chip).

 Footprint: 3.3" x 2.1".

 Maximum baud rate is 19.2K.

 Power requirements: 55ma @ +5Vdc ±10% standby, 160ma average when

touched, 240ma peak.

AccuTouch E271-2201 PC-Bus Controller

 Half-slot PC-Bus controller (for ISA and EISA systems).

 Host communication can be polled or interrupt-driven.

 I/O address and interrupt (IRQ) selectable through software or jumpers.

 Theory of Operation 3

 AccuTouch E271-141 and DuraTouch E271-142 controller emulation.

IntelliTouch 2500S Serial Controller

 Same footprint as the AccuTouch E271-2210 controller.

 Compatible protocol with the E271-2210 controller.

 Power requirements: 60ma @ +5Vdc ±5%, 60ma typical.

THEORY OF OPERATION

Each SmartSet controller has the circuitry needed to interface an Elo touchscreen

to a host computer. Functionally, the circuitry may be divided into the following

categories:

 Drive circuitry which applies electrical signals to the touchscreen.

 A measurement subsystem which detects and digitizes signals returned from

the touchscreen.

 Interface circuitry (serial, PC-Bus, or USB).

 A microprocessor which directs the operation of the various controller

subsystems.

The following section describes how each of these component subsystems operate

to measure coordinates from an Elo touchscreen.

The AccuTouch Touchscreen

The AccuTouch Model E274 touchscreen consists of a glass panel formed to

match the shape of the underlying display surface. A hard-coated plastic cover

sheet is suspended over the surface of the glass by tiny separator dots. The cover

sheet may be clear for best image clarity or have an anti-glare finish. See Figure 1-

1, page 4, for detail on the construction of the AccuTouch touchscreen.

The glass is covered with a uniform resistive coating, and the plastic cover sheet

has a conductive coating. With a light touch on the cover sheet, the conductive

coating on the plastic contacts the resistive coating on the glass. There is an

electrical drive connection to each of the four corners of the resistive coating, and

a pickup connection to the coating on the cover sheet. When the proper DC

voltages are applied to the drive connections on the glass, the voltage at the

pickup connection is proportional to the position of the touch.

4 Chapter 1 - Introduction

Figure 1-1. AccuTouch Touchscreen

The logical sequence of operation for the SmartSet controller, used in

combination with the E274 touchscreen, is as follows:

1. When the controller is waiting for a touch, the resistive layer of the

touchscreen (the coating on the glass) is biased at +5V through all four drive

lines, and the cover sheet is grounded through a high resistance. When the

touchscreen is not being touched, the voltage on the cover sheet remains at

zero. The voltage level of the cover sheet is continuously converted by the

analog to digital converter (ADC) and monitored by the microprocessor on the

controller. When the touchscreen is touched, the microprocessor detects the

rise in the voltage of the cover sheet and begins coordinate conversion.

2. The microprocessor places the X drive voltage on the touchscreen by applying

+5V to Pins H and X and grounding Pins Y and L.

3. An analog voltage proportional to the X (horizontal) position of the touch

appears on the cover sheet at Pin S of the touchscreen connector. This voltage

is then digitized by the ADC and subjected to an averaging algorithm, then

stored for transmission to the host.

 The averaging algorithm reduces noise resulting from contact bounce during

the making and breaking of contact with the touchscreen. Successive X

samples are tested to determine that their values differ by no more than a

certain range. If one or more samples fall outside this range, the samples are

discarded and the process is restarted. This is continued until several

successive X samples fall within the range. The average of these values is

used as the X coordinate.

 Theory of Operation 5

4. Next, the microprocessor places the Y drive voltage on the touchscreen by

applying +5V to Pins H and Y and grounding Pins X and L.

5. An analog voltage proportional to the Y (vertical) position of the touch now

appears on the cover sheet at Pin S of the touchscreen connector. This signal is

converted and processed as described above for the X position.

6. Successive coordinate pairs are sampled to eliminate the effects of noise. If a

sample does not fall within an internal range, all X and Y coordinates are

discarded and the X sequence is restarted at step 2.

7. Once acceptable coordinates have been obtained, an average coordinate is

determined and communicated to the host processor.

Parameters for the internal filtering algorithms can be adjusted through software

setup. See Filter command, page 86.

The X and Y values are similar to Cartesian coordinates, with X increasing from

left to right and Y increasing from bottom to top. These absolute coordinates are

arbitrary and unscaled, and will vary slightly from unit to unit. The SmartSet

controller can be calibrated to align the touchscreen coordinate system with the

display image, reorient each axis, and scale the coordinates before they are

transmitted to the host. Because of the stability of the AccuTouch system,

recalibration is not necessary unless the position of the image changes.

The IntelliTouch Touchscreen

The IntelliTouch surface wave technology touchscreen consists of a glass panel

molded to the precise shape of a display's face. It may be clear for best image

clarity or treated for anti-glare properties. Each axis of the touchscreen panel has a

transmitting and receiving piezoelectric transducer, and sets of reflector stripes.

See Figure 1-2, page 6, for details on the construction of an IntelliTouch

touchscreen.

Other variations of the technology include SecureTouch™, where the glass panel

is up to 12mm thick and thermally or chemically strengthened, and iTouch™

touch-on-tube technology, where the transducers and reflector stripes are placed

directly on the CRT faceplate glass, eliminating the need for a glass overlay.

Surface wave energy is generated by the transmitting transducers mounted in the

corners of the touchscreen. The touchscreen controller sends a 5.53 MHz

electrical signal to the X-axis transmitting transducer which converts the signal

into surface waves. A set of reflector stripes located on the lower edge of the glass

reflects these waves across the active area of the glass. Reflector stripes at the top

gather the reflected waves and direct them to the X-axis receiving transducer

which reconverts the surface waves into an electrical signal.

6 Chapter 1 - Introduction

Figure 1-2. IntelliTouch Touchscreen

When a finger, or other energy-absorbing object touches the touchscreen, a

portion of the wave is absorbed. The resulting change in the received signal is

analyzed by the controller and a digitized X coordinate is determined. This

process is repeated similarly to determine the Y coordinate. The Z-axis level is

determined by measuring the amount of signal attenuation at the touch location.

Once X, Y, and Z coordinates have been determined, the controller transmits them

to the computer.

The controller detects touches by comparing received signals to a reference

waveform acquired in an untouched condition. This allows the controller to ignore

contamination such as dirt and scratches. IntelliTouch controllers instantaneously

detect and factor out contamination. A new reference waveform is acquired,

effectively ignoring the contamination and returning the touchscreen to normal

operation. If the contamination is removed, the controller repeats the process of

acquiring a new reference waveform.

The X and Y values are similar to Cartesian coordinates, with X increasing from

left to right and Y increasing from bottom to top. Z increases with touch pressure.

These absolute coordinates are arbitrary and unscaled, and will vary slightly from

unit to unit. The SmartSet controller can be calibrated to align the touchscreen

coordinate system with the display image, reorient each axis, and scale the

coordinates before they are transmitted to the host. Because of the stability of the

IntelliTouch system, recalibration is not necessary unless the position of the image

changes.

 About this Manual 7

ABOUT THIS MANUAL

This manual provides technical information on the Elo SmartSet touchscreen

controller family. Details are given in this manual on the features, configurations,

connections, and specifications of the SmartSet controllers.

This manual also includes examples of writing a software interface, such as a

device driver, for the controller. Elo supplies a variety of drivers including its

MonitorMouse® family of mouse emulation drivers for DOS, Microsoft Windows

(3.x, NT, 95, 98, ME, 2000, XP, CE, etc.), OS/2, Macintosh, and Linux. Other

third-party drivers and interfaces are also available. See www.elotouch.com or

contact Elo before writing your own driver.

The SmartSet Companion Disk, included with this manual or which may be

downloaded from www.elotouch.com, contains the sample driver source code and

the SmartSet software setup utility, both described in this manual. See the

!READ.ME! file, if present, for any changes or additions to this manual.

The rest of this manual is organized as follows:

Chapter 2 Explains how to set up the controllers with jumpers.

Chapter 3 Details the controller connections and installation procedures.

Chapter 4 Gives a tutorial on the important operating characteristics of the

SmartSet controller interface using the SmartSet software setup

utility.

Chapter 5 Describes the communication protocol for the controllers and

provides the information you'll need for writing a software

interface. Example C code is included.

Chapter 6 Provides a command reference for the SmartSet controller software

interface.

Appendix A Details optional data output formats and emulation modes.

Appendix B Gives algorithms for coordinate scaling.

Appendix C Lists controller specifications.

For more information on the AccuTouch or IntelliTouch product lines, including

touchscreen and controller options, installation, and troubleshooting, see the

AccuTouch Product Manual and IntelliTouch Product Manual respectively,

available for download on www.elotouch.com.

8 Chapter 1 - Introduction

9

2

Controller Jumper Settings

 General Information 9

 E271-2210 Serial Controller 12

 E271-2201 PC-Bus Controller 17

 2500S Serial Controller 22

GENERAL INFORMATION

SmartSet controllers are shipped preconfigured for use with the Elo driver

software. For most users, no changes are necessary. Required jumper settings and

options available for your controller are listed on www.elotouch.com (see

Support/Web Tech). If your software does not use Elo drivers, check your third-

party documentation for required jumper settings.

The E271-2210, E271-2201, and 2500S controllers can also be jumpered to

emulate other Elo controllers. See the corresponding sections in this chapter for

details.

If you are writing your own driver software, the information in this chapter will

detail all options available through jumpers. The SmartSet controllers can also be

configured through software setup. Jumpers can easily be used to select the

power-on configuration, and then software used to adjust parameters at any time.

A DOS software setup utility is included on the SmartSet Companion Disk for this

purpose, or you can write your own code with the information provided in this

10 Chapter 2 - Controller Jumper Settings

manual. Options selected through software can be stored in the controllers'

nonvolatile memory (NVRAM) as power-on defaults.

Software setup is more flexible as only a limited number of options are available

through jumpers. The software setup utility can save all settings to a disk file, then

program other controllers to the identical power-on settings with a single

command.

Selecting Power-On Settings with Jumpers

Jumper blocks may have a horizontal or vertical orientation, as shown in Figure 2-

1. The figure shows jumpers installed normally for J3 and J7. Because some

jumpers work in tandem with others, a cross-connection may also be significant

depending on the controller. A valid cross-connection is shown between J0 and

J1. Jumpers with an invalid cross-connection, as with J4 and J5, have no effect

and are available as extra jumpers.

Figure 2-1. Jumpering SmartSet Controllers

Selecting Power-On Settings from NVRAM

With the AccuTouch controllers, jumper J7 must not be installed to enable power-

on settings from NVRAM. For information on the software setup utility

SMARTSET.EXE, see Chapter 4.

NOTE

To enable use of the jumpers on AccuTouch controllers, J7 must be installed. If J7

is not installed, power-on settings are from NVRAM.

 General Information 11

 Proceed to the page shown for your controller:

 E271-2210 Serial Controller page 12
 E271-2201 PC-Bus Controller page 17
 2500S Serial Controller page 22

12 Chapter 2 - Controller Jumper Settings

E271-2210 SERIAL CONTROLLER

The following figure shows the mounting dimensions, jumper locations,

connections, and pinouts for the E271-2210 controller. For detailed drawings, see

www.elotouch.com. Mounting holes marked with an 'X' are non-plated through-

holes (NPTH).

Figure 2-2. E271-2210 Serial Controller

The following table lists the jumper settings for the E271-2210 controller.

Baud Rate (From Left)
 9600 J0-N
 J1-N
 2400 J0-Y
 J1-N
 1200 J0-N
 J1-Y
 300 J0-Y
 J1-Y
 19200 Cross connect (connect jumper

horizontally so the top pins of J0 and J1
are jumpered)

Output Format
 Binary J2-N
 ASCII J2-Y
Hardware Handshaking
 Enabled J3-N
 Disabled J3-Y

 E271-2210 Serial Controller 13

Mode
 Stream J4-N
 Single-Point J4-Y
Reserved J5-N
Reserved J6-N
Power-On Settings
 Jumpers J7-Y
 NVRAM J7-N
Reserved J8-N
Reserved J9-N
Emulation Mode
 None J10-N
 J11-N
 E271-140 J10-Y
 J11-N
 E261-280 J10-Y
 J11-Y
 E281A-4002 J10-N
 J11-Y

14 Chapter 2 - Controller Jumper Settings

Selecting the Data Transmission Rate

The E271-2210 communicates with the host computer through a serial port. Set

the data transmission rate of the controller to match that of the computer's serial

port. Jumpers J0 and J1 control the baud rate as follows:

Baud Rate J0 J1
9600 none none (shipped setting)
2400 installed none
1200 none installed
300 installed installed
19200 ----cross connected----

The defaults for the other communication parameters are 8 data bits, 1 stop bit,

and no parity.

A software command may also be used to select a wider range of data

transmission rates and other communication parameters. All communication

parameters can be saved in NVRAM as a power-on default. See the Parameter

command, page 102, for details.

Selecting the Data Format

The E271-2210 controller touch coordinate output may be either ASCII characters

or binary data. Jumper J2 controls the format, in combination with the emulation

mode jumpers J10 and J11 (see page 15). For details of the standard Touch packet,

see page 110. For other formats, including emulation modes, see Appendix A.

If you are using Elo driver software, J2 must not be installed.

Format J2
Binary not installed (shipped setting)
ASCII installed

ASCII format is useful in troubleshooting installations with a dumb terminal or

modem software in local mode. Binary mode is more efficient for communication

with driver programs.

A software command may also be used to select a wider range of data formats.

The data format can be saved in NVRAM as a power-on default. See the Emulate

command, page 82, for details.

 E271-2210 Serial Controller 15

Hardware Handshaking

The E271-2210 controller supports hardware handshaking. Jumper J3 is used to

enable or disable hardware handshaking. If disabled, the controller ignores the

DTR and RTS lines.

Hardware Handshaking J3
Enabled not installed (shipped setting)
Disabled installed

A software command may also be used to select a wider range of hand-shaking

options. Handshaking options can be saved in NVRAM as a power-on default.

See the Parameter command, page 102, for details.

Choosing Single-Point or Stream Modes

Jumper J4 selects Single-Point or Stream Mode on all SmartSet controllers.

Mode J4
Stream not installed (shipped setting)
Single-Point installed

If Single-Point Mode is selected, a single coordinate pair is communicated for

each touch. No further coordinates are communicated until the finger is lifted

(untouch), and the touchscreen is retouched.

If Stream Mode is selected, the controller sends coordinate pairs continuously

until untouch.

If you are using Elo driver programs, Stream Mode is required.

A software command may also be used to select a wider range of modes. Modes

can be saved in NVRAM as a power-on default. See the Mode command, page 96,

for details.

Emulation Mode

If you are using driver software that does not directly support the SmartSet

protocol, the E271-2210 controller can be set up through jumpers for hardware

compatibility with obsolete controllers including the AccuTouch E271-140

controller, IntelliTouch E281A-4002 controller (2.0 or later firmware), or the

DuraTouch E261-280 controller.

16 Chapter 2 - Controller Jumper Settings

When the controller is in an emulation mode, it will not respond to the SmartSet

protocol. For descriptions of the protocols in the various emulation modes, see

Appendix A.

As an alternative to full emulation modes, a software command may be used to

select a wide range of output data formats. The output data format can be saved in

NVRAM as a power-on default. See the Emulate command, page 84, for details.

To select an emulation mode, set the jumpers as follows:

Emulation Mode Jumpers
None (SmartSet Mode) J10-N (shipped setting)
 J11-N
AccuTouch E271-140 J10-Y
 J11-N
IntelliTouch E281A-4002 J10-N
(2.0 or later firmware) J11-Y
DuraTouch E261-280 J10-Y
 J11-Y

When emulation mode is enabled, J2 selects ASCII or binary emulation in the

protocol specified by J10 and J11.

Reserved Jumpers

Jumpers J6, J8, and J9 on the E271-2210 controller are reserved. They should not

be installed.

 E271-2201 PC-Bus Controller 17

E271-2201 PC-BUS CONTROLLER

The following figure shows the dimensions, jumper locations, connections, and

pinouts for the E271-2201 controller. For detailed drawings, see

www.elotouch.com.

Figure 2-3. E271-2201 PC-Bus Controller

The following lists the jumper settings for the E271-2201 controller.

Power-On Settings (From Top)
 Jumpers J7-Y
 NVRAM J7-N
Reserved J6-N
Touchscreen Type
 AccuTouch J5-Y
 DuraTouch J5-N
Mode
 Stream J4-N
 Single-Point J4-Y
Interrupt
 None (Polled) J3-N
 J2-N
 IRQ2 J3-Y
 J2-Y

18 Chapter 2 - Controller Jumper Settings

 IRQ3 J3-Y
 J2-N
 IRQ5 J3-N
 J2-Y
 IRQ7 Cross-connect (connect jumper

vertically so the left pins of J2 and J3
are jumpered)

Base Port (in hex)
 280 (recommended) J1-N
 J0-N
 240 J1-N
 J0-Y
 180 J1-Y
 J0-N
 100 J1-Y
 J0-Y
 2A0 Cross connect (connect jumper

vertically so the left pins of J0 and J1
are jumpered)

E271-141 Emulation Mode (From Top)
 Enable J10-Y
 Disable J10-N
Resolution
(E271-141 Emulation Mode Only)
 8-Bit J11-Y
 12-Bit J11-N

Selecting the Base I/O Port

The E271-2201 uses eight consecutive I/O ports. The Base I/O Port is specified by

jumpers J0 and J1. The values of the settings are as follows:

Base I/O Port (Hex) J0 J1
280 none none (shipped setting)
240 installed none
180 none installed
100 installed installed
2a0 ----cross connected----

A software command may also be used to select a wider range of Base I/O Ports.

Any base address that is a multiple of 8 can be used. The Base I/O Port can be

saved in NVRAM as a power-on default. See the Parameter command, page 102,

for details.

Choose an I/O address block carefully so it will not contend with another device.

 E271-2201 PC-Bus Controller 19

Selecting the Interrupt (IRQ)

The E271-2201 may be operated in either Polled or Interrupt Mode. In Interrupt

Mode, the controller signals the host that data is available. In Polled Mode, the

host software must poll the controller for information.

To use Interrupt Mode, you may install jumpers at J2 and/or J3 to select the

Interrupt (IRQ). For Polled Mode, neither jumper should be installed.

Interrupt J2 J3
None (polled) none none (shipped setting)
IRQ5 installed none
IRQ3 none installed
IRQ2 installed installed
IRQ7 ----cross connected----

A software command may also be used to select a wider range of Interrupt values.

Any Interrupt from IRQ2 to IRQ7 can be used. The Interrupt can be saved in

NVRAM as a power-on default. See the Parameter command, page 102, for

details. If you are using Elo driver programs, jumper the controller for Polled

Mode as the IRQ is selected by software setup (unless E271-141 emulation mode

is selected with J10).

Choose the Interrupt carefully so it is not the same as another device.

The following table lists the devices assigned to each interrupt in a PC/XT and a

PC AT:

 IRQ XT AT/386/486
 2 IBM EGA, IBM network Mapped to IRQ9
 3 COM2 COM2
 4 COM1 COM1
 5 Hard disk controller LPT2
 6 Floppy disk controller Floppy disk controller
 7 LPT1 LPT1

Elo's recommendations for choosing an interrupt, in order of preference, are listed

below. Compare these interrupts with the tables above, skipping the interrupt if a

conflict exists.

 XT: 7,3,4,2,6,5 AT/386/486: 5,7,2,3,4,6

To avoid any chance of interrupt contention, you should design the driver

software to disable the interrupt line drivers of contending devices where possible,

such as serial and parallel controllers.

20 Chapter 2 - Controller Jumper Settings

Choosing Single-Point or Stream Modes

Jumper J4 selects Single-Point or Stream Mode on all SmartSet controllers.

Mode J4
Stream not installed (shipped setting)
Single-Point installed

If Single-Point Mode is selected, a single coordinate pair is communicated for

each touch. No further coordinates are communicated until the finger is lifted

(untouch), and the touchscreen is retouched.

If Stream Mode is selected, the controller sends coordinate pairs continuously

until untouch.

If you are using Elo driver programs, Stream Mode is required.

A software command may also be used to select a wider range of modes. Modes

can be saved in NVRAM as a power-on default. See the Mode command, page 96,

for details.

Selecting the Touchscreen Type

The E271-2201 controller is shipped with jumper J5 installed for E274

AccuTouch 5-wire touchscreens. If you are using a 4-wire DuraTouch touchscreen

(no longer manufactured by Elo), remove the jumper at J5.

Touchscreen Type J5
AccuTouch installed (shipped setting)
DuraTouch not installed

Emulation Mode

If you are using driver software that does not directly support the SmartSet

protocol, the E271-2201 controller can be set up through jumpers for hardware

compatibility with the AccuTouch E271-141 controller (or the DuraTouch E271-

142 controller).

When the controller is in an emulation mode, it will not respond to the SmartSet

protocol. For descriptions of the protocols in the various emulation modes, see

Appendix A.

To select emulation mode, set the J10 jumper as follows:

 E271-2201 PC-Bus Controller 21

Emulation Mode J10
None (SmartSet Mode) not installed (shipped setting)
E271-141 installed

8- and 12-Bit Modes

When E271-141 emulation mode is enabled, J11 selects whether 8-Bit or 12-Bit

Mode is emulated.

Mode J11
8-Bit installed
12-Bit not installed

The 12-Bit Mode offers greater resolution. 8-bit coordinates are simply 12-bit

coordinates shifted right four bits. Elo driver software internally shifts 8-bit

coordinates left four bits. This way, new calibration points are not required when

switching between 8- and 12-Bit Modes. Calibration is discussed in Chapter 4.

In 8-Bit Mode, a single two-byte transfer is required to read both the X and Y

coordinates. In Interrupt Mode, a single interrupt must be serviced for each

coordinate pair.

In 12-Bit Mode, two separate two-byte transfers are required to read the X and Y

coordinates. In Polled Mode, each polling results in one two-byte transfer. Two

pollings are required for each coordinate pair, one for X and one for Y. In

Interrupt Mode, two interrupts must be serviced for each coordinate pair.

Reserved Jumpers

Jumper J6 on the E271-2201 controller is reserved. It should not be installed.

22 Chapter 2 - Controller Jumper Settings

2500S SERIAL CONTROLLER

The following figure shows the mounting dimensions, jumper locations, and

connections for the IntelliTouch 2500S serial controller (P/N 351077-000). For

detailed drawings, see www.elotouch.com.

Figure 2-4. 2500S Serial Controller

The 2500S controller is shipped with a spare jumper fitted vertically on the right

side of the jumper block. To enable J1 or J2, install the jumper horizontally.

The following table lists the jumper settings for the 2500S controller:

(From Top)* Function Default
J2 E281A-4002 Emulation Mode Not installed
J1 Set NVRAM to defaults on power up Not installed
*From Top refers to board when the connector pins are pointed down

Set NVRAM to Defaults on Power Up

Install this jumper only if the controller configuration has been incorrectly

programmed through software to recover the standard settings.

0.156 in (4 mm)

ELO TOUCHSYSTEMS 2500S

0.150 in (4 mm)

LED

IntelliTouch
2X6

Power
2X5

RS-232
2X5

Jumpers

2
.1

0
 i
n

 (
5
3
 m

m
)

1
.8

0
 i
n

 (
4
6
 m

m
)

3.00 in (76 mm)

3.30 in (84 mm)

J2
J1

 2500S Serial Controller 23

E281A-4002 Emulation Mode

If you are using driver software that does not directly support the SmartSet serial

protocol, the controller can be set up through jumper J2 for hardware

compatibility with the IntelliTouch E281A-4002 controller (see page 114).

24 Chapter 2 - Controller Jumper Settings

25

3

Installation and Connections

 E271-2210 Serial Controller 26

 E271-2201 PC-Bus Controller 30

 2500S Serial Controller 32

 Diagnostic LEDs 35

The installation procedure for a SmartSet controller consists of setting the jumpers

on the controller, physically installing the controller, and making connections to

the controller. Use only Elo supplied or approved cabling for best operation and to

insure full regulatory agency compliance.

Read Chapter 2 to determine the jumper settings before installing the controller.

CAUTION

All Elo AccuTouch touchmonitors have transient protection installed. If you are

not using an Elo touchmonitor, see the AccuTouch Product Manual for important

information.

26 Chapter 3 - Installation and Connections

E271-2210 SERIAL CONTROLLER

Installation

This section assumes you are integrating the AccuTouch E271-2210 serial

controller board into your system as a component. The controller is also available

in kits and enclosures with cabling and a power supply. See the AccuTouch

Product Manual for various integration options.

The following information gives you the controllers' mounting dimensions, the

touchscreen connections, the power connections and requirements, and the output

connections. It is your responsibility to determine how best to mount the

controller and output connector in the display or separate enclosure, and provide a

power supply.

A Generic Internal AccuTouch Touchscreen Controller Mounting Kit (P/N

734849-000) is available from Elo for mounting the E271-2210 controller inside a

display. It includes wiring harnesses and cables, mounting hardware, and a DB9

female bulkhead connector. A power supply is available separately (P/N 742067-

000).

Mounting the Controller and Connecting Chassis Ground

The mounting dimensions for the E271-2210 controller shown in Figure 2-2, page

12. Remember that the cable headers will increase the space required.

The mounting holes fit common 0.156 inch plastic snap-in standoffs. A chassis

ground connection is required through one of the plated mounting holes (PTH) to

provide a return path for the on-board transient protection. Conductive mounting

hardware can provide a chassis ground connection for the controller.

Connections

Power Connections

The E271-2210 controller operates on a single voltage, positive with respect to

ground. See page 2 for power requirements.

Connect a power cable harness to P4 on the controller, a 1x2 header with pins on

0.100" centers. The recommended mating plug is a Molex polarized, locking

crimp terminal housing #22-01-3027. The power connection is labeled to

designate the positive (+) and ground (-) pins. Connect a power supply (such as

Elo P/N 742067-000) to the harness and then to AC.

 E271-2210 Serial Controller 27

You may provide a suitable power supply and cabling, or Elo can provide them.

See the AccuTouch Product Manual for details.

Serial Connections

The E271-2210 controller operates at standard RS232C levels. The serial port

connection is at P2 on the controller, a 2x5 header with pins on 0.100" centers. It

is configured so a ribbon cable and commonly available insulation displacement

connectors (IDCs) may be used.

The controller only requires a 2-wire connection, Transmit Data (TXD) and Signal

Ground (GND). Transmit Data should be connected to your computer's Receive

Data (RXD) pin. For two-way communications, the controller's Receive Data pin

should also be connected to the host's Transmit Data pin.

Data Set Ready (DSR) and Clear to Send (CTS) may be used by the host to verify

controller connections and operation. DSR is asserted when power is applied to

the controller and CTS is asserted when the controller's power-on sequence is

complete. Data Terminal Ready (DTR) and Request to Send (RTS) can also be

connected for full hardware handshaking.

Most Elo drivers require two-way communication and all four handshaking lines.

(Some drivers may also be configured to allow simple one-way communication

without needing any handshaking lines.)

 P2 Pins Signal DB25 DB9
 1 DCD 8 1
 2 DSR 6 6
 3 RXD 3 2
 4 RTS 4 7
 5 TXD 2 3
 6 CTS 5 8
 7 DTR 20 4
 8 RI (N/C) 22 9
 9 GND 7 5
 10 Key

CAUTION

Observe polarity when connecting the power leads to the power supply. Reversing

polarity may damage the controller.

28 Chapter 3 - Installation and Connections

9 7 5 3 1

┌───────────────┐

│ ∙ ∙ ∙ ∙ ∙ │

│ X ∙ ∙ ∙ ∙ │

└───────────────┘

10 8 6 4 2

Figure 3-1. P2 Serial Connector Pin Positions, End View

If you are installing the controller inside a display, for the convenience and safety

of the user, we recommend making a cable which connects P2 to a DB9 female

connector (male connectors are used with external controllers) mounted on the

back of the display. The shell of this connector should be tied to chassis ground.

Use an additional cable from the back of the display to your serial port.

Elo can provide suitable adapters and cabling. See the AccuTouch Product

Manual for details.

Touchscreen Connections

A five conductor ribbon cable is attached to the AccuTouch touchscreen. The

female connector on the cable mates with the controller's 1x5 touchscreen

connection at P3 (see Figure 3-2). Inverting this connection effectively rotates the

touchscreen 180°. If you are installing the controller outside the display cabinet,

you may need to make up a short cable with a connector that mates with the

touchscreen connector, and a connector on the other end to suit the installation.

Depending on the type of installation, you may or may not need to install transient

protection as described below.

Transient protection is required in all installations where it is possible to turn the

display on or off while the touchscreen is disconnected from the controller. For

more information on transient protection, see the AccuTouch Product Manual.

1. If Elo installed the touchscreen, and the controller is external, a cable with

transient protection is already installed, terminated with a DB9 male connector

mounted on the back of the display. You will need a cable from the DB9

connector to the controller. DB9 pin connections for Elo installed touchscreen

cables are:

 1-S, 6-X, 7-Y, 8-L, 9-H

2. If you are installing the touchscreen, and the controller will be located inside

the display cabinet, you will need to make a data cable, but no touchscreen

cable is required.

3. If you are installing the touchscreen, and the controller will be outside the

display cabinet, you must make a touchscreen cable with transient protection.

 E271-2210 Serial Controller 29

H X S Y L

┌───────────────┐

│ ∙ ∙ ∙ ∙ ∙ │

└───────────────┘

1 2 3 4 5

Figure 3-2. P3 Connector Pin Positions, End View

30 Chapter 3 - Installation and Connections

E271-2201 PC-BUS CONTROLLER

Installation

Follow these steps to install the E271-2201 controller:

1. Discharge any static charge on your body by touching the back of the

computer cabinet.

2. Note the Base I/O Port and Interrupt for use with your driver software. The

factory default settings are 280 (hex) and no Interrupt (Polled Mode). Eight

consecutive I/O ports are used by the E271-2201. Ports 280-287 are typically

not used by other devices. Elo driver software sets the Interrupt through

software setup.

3. Turn the computer off and unplug the AC power cord from the outlet.

4. Remove the computer's cover. Refer to the computer user's manual for this

step.

5. Choose an available expansion slot. On a PC/XT, do not use slot 8. On an AT,

any slot may be used.

6. Remove the retaining screw for the expansion slot's access bracket, then

remove the bracket.

7. Insert the controller into the expansion slot. The controller should seat fully

and the access bracket should mate with the frame of the computer.

8. Replace the retaining screw, insuring that the controller remains seated in the

socket.

9. Replace the computer's cover.

10. If you have a touchmonitor, plug the DB9 female end of the supplied

touchscreen cable into the DB9 male connector labeled "Touchscreen

Interface" on the back of the touchmonitor case. Attach the opposite end of the

cable, DB9 male, to the DB9 female connector on the controller. Do not

confuse the touchscreen and video connections.

 If you do not have a touchmonitor, see Connections on the following page.

11. Plug the AC power cord back in and reboot the computer.

 E271-2201 PC-Bus Controller 31

Connections

AccuTouch

The AccuTouch touchscreen typically has a 30 inch cable terminated with a 1x5

female connector. This is normally converted to a DB9 male bulkhead connector

with an adapter cable internal to the display (P/N 899389-000). This adapter has

built-in transient protection, and must be connected through a short lead to frame

ground. For more information on transient protection, see Touchscreen

Connections, page 28, and the AccuTouch Product Manual.

An additional external cable (P/N 454173-000) connects the bulkhead connector

to the DB9 female connector on the controller. See the AccuTouch Product

Manual for cabling kits and options.

The following pinouts apply:

AccuTouch Signal Touchscreen Cable Pin Controller DB9 Pin
H 1 9
X 2 6
S 3 1
Y 4 7
L 5 8

DuraTouch

The DuraTouch touchscreen typically has a short flexible cable with a 1x4 female

connector. This must be converted to a DB9 male connector for connection with

the DB9 female connector on the controller.

The following pinouts apply:

DuraTouch Signal Touchscreen Cable Pin Controller DB9 Pin
XH 1 6
XL 2 7
YL 3 8
YH 4 9

32 Chapter 3 - Installation and Connections

2500S SERIAL CONTROLLER

Installation

This section assumes you are integrating the 2500S serial controller board into

your system as a component.

The following information gives you mounting dimensions, touchscreen

connections, power connections and requirements, and data output connections. It

is your responsibility to determine how best to mount the controller and data

connector in the display or separate enclosure, and provide a power supply.

Mounting the Controller and Connecting Chassis Ground

The mounting dimensions for the 2500S controller are shown in Figure 2-4, page

22. Remember that the cable headers will increase the space required.

The mounting holes fit common 0.156-inch plastic snap-in standoffs. A chassis

ground connection is required through one of the plated through mounting holes

(PTH) or P4 pin 8 to provide adequate shielding for the touchscreen cable.

Conductive mounting hardware can provide a chassis ground connection for the

controller. Grounding all four mounting holes will give the best EMI performance.

Connections

Power Connection

The 2500S controller operates on a single voltage, positive with respect to ground.

See page 3 for power requirements.

Connect a power cable harness to P4 on the controller, a 2x5 header with pins on

0.100" centers. Use a ribbon cable with an IDC connector or crimp-to-wire pin

receptacles. An acceptable plug can be selected from Molex series 70450, AMP

AMPMODU Mod. IV product line, or Berg mini-latch housing with Mini-PV

pins. Connect a power supply (such as P/N 742067-000, available separately) to

the harness and then to AC. Elo cable P/N 889507-000 may be used which has

flying leads for power and ground.

 2500S Serial Controller 33

9 7 5 3 1

┌───────────────┐

│ ∙ ∙ ∙ ∙ ∙ │

│ ∙ ∙ X ∙ ∙ │

└───────────────┘

10 8 6 4 2

Figure 3-3. P4 Power Supply Connector Pin Positions, End View

P4 Pins Signal Function

1 +Pwr Supply voltage positive

2 PwrCom Supply voltage negative (tied to pin 4)

3 N/C

4 PwrCom Supply voltage negative (tied to pin 2)

5 LED Remote External LED driver

6 Key

7 N/C

8 Chassis Frame ground connection

9 -Reset Open collector input: open = normal
operation; short to PwrCom = hardware
reset.

10 N/C

Serial Connection

The 2500S controller operates at standard RS232C levels. The serial port

connector, P2, is a 2x5 header with pins on 0.100" centers. It is configured so a

ribbon cable and commonly available insulation displacement connectors (IDCs)

may be used.

9 7 5 3 1

┌───────────────┐

│ ∙ ∙ ∙ ∙ ∙ │

│ X ∙ ∙ ∙ ∙ │

└───────────────┘

10 8 6 4 2

Figure 3-4. P2 Serial Connector Pin Positions, End View

CAUTION

Observe polarity when connecting the power leads to the power supply. Reversing

polarity may damage the controller.

34 Chapter 3 - Installation and Connections

P2 Pins DB25 DB9 Host Signal
1 8 1 DCD (N/C)
2 6 6 DSR
3 3 2 RXD
4 4 7 RTS
5 2 3 TXD
6 5 8 CTS
7 20 4 DTR
8 22 9 RI (N/C)
9 7 5 GND
10 Key

The controller only requires a 2-wire connection, controller Transmit Data (P2

pin 3) and Signal Ground (P2 pin 9). For two-way communications, the controller

Receive Data (P2 pin 5) should also be connected to the host Transmit Data pin.

Data Set Ready (DSR) and Clear to Send (CTS) may be used by the host to verify

controller connections and operation. DSR is asserted when power is applied to

the controller and CTS is asserted when the controller's power-on sequence is

complete. Data Terminal Ready (DTR) and Request to Send (RTS) can also be

connected for full hardware handshaking.

Note that if the application uses the SmartSet Reset command (‘Rx’ where x is the

type of reset required), CTS should be monitored by the host to detect the

completion of the reset. If CTS is not monitored, then the host should delay for

approximately 5 seconds after issuing a Reset command.

Elo driver software typically requires two-way communication (unless specifically

disabled), and all four handshaking lines.

As the controller is typically installed inside a display, we recommend that you

make a cable that connects P2 to a DB9 female connector mounted on the back of

the display, or use Elo's serial cable P/N 942741-000. The shell of this connector

should be tied to chassis ground. Use an additional DB9 male to DB9 female

straight-through cable from the back of the display to your serial port, such as Elo

P/N 454173-000.

Elo can provide suitable adapters and cabling. See the IntelliTouch Product

Manual for details.

Touchscreen Connection

A multi-conductor cable terminated in a 2x6 female connector is attached to the

IntelliTouch touchscreen. The controller is normally placed inside the display with

the touchscreen cable connecting directly to the 2x6 header at P3 on the controller

(see Figure 2-4, page 22).

 Diagnostic LEDs 35

Unlike the serial cable, the touchscreen cable has a special construction. Use only

Elo touchscreen cables and adapters.

2 4 6 8 10 12

┌──────────────────┐

│ X ∙ ∙ ∙ ∙ X │

│ ∙ ∙ ∙ ∙ ∙ ∙ │

└──────────────────┘

1 3 5 7 9 11

Figure 3-5. P3 Touchscreen Connector Pin Positions, End View

DIAGNOSTIC LEDS

E271-2210 Controller

The E271-2210 controller has one yellow diagnostic LED. Following power on,

the controller performs its self-test. (Most Elo drivers display the result of the self-

test). After the self-test, the LED flashes about 1.5 times a second, indicating

normal operation.

During normal operation, the LED also indicates controller/host communication is

in progress. For example, when the touchscreen is touched, the LED should light

or flicker, then return to the normal flash rate. If the host does not remove the

packet from the controller, the LED will stay lit.

If the LED stays lit without a touch, the touchscreen or cabling may be shorted.

Disconnect the touchscreen cable from the controller and cycle power to the

controller to verify this condition.

If the LED flashes about four times a second, a warning error condition is

indicated, such as improper communication from the host. Suspect the baud rate

or other communication parameters.

E271-2201 Controller

The E271-2201 controller has three diagnostic LEDs. Following power on, the

controller performs its self-test. (Most Elo drivers display the result of the self-

test). After the self-test, a flashing green LED indicates normal operation (except

in Low Power Mode, see page 95). If a fatal error was encountered, the yellow and

red LED's flash an eight-bit error code starting with the most significant bit, where

yellow indicates a binary '0' and red a binary '1'.

During normal operation, the yellow LED indicates controller/host

communication is in progress. For example, when the touchscreen is touched, the

36 Chapter 3 - Installation and Connections

yellow LED should light or flicker (may not be visible with bus controllers on fast

PC's). If the host does not remove the packet from the controller, the LED will

stay lit.

If the yellow LED lights without a touch, the touchscreen or cabling may be

shorted. Disconnect the touchscreen cable from the controller and cycle power to

the controller to verify this condition.

A constant red LED indicates a warning error condition, such as improper

communication from the host. Suspect the baud rate or other communication

parameters.

2500S Controller

The 2500S controller has one green diagnostic LED. Following power on, the

controller performs a short self-test, where the LED stays lit. After the self-test,

the LED flashes once per second, indicating normal operation. The self-test results

are displayed by most Elo driver software.

During normal operation, the LED also indicates controller/host communication is

in progress. When the touchscreen is touched, the LED should light continuously,

then return to the normal flash rate. If the host does not remove the packet from

the controller, the LED will stay lit.

The LED will also stay lit without a touch if the touchscreen or cabling is

disconnected or not functioning.

If the LED flashes about two times per second, a warning error condition is

indicated, such as improper communication from the host. Suspect an invalid

command sequence from the host.

Remote LED Capability

The diagnostic LED drive is connected to pin 5 of the P4 power supply connector.

This signal may be used to drive an external indicator such as another LED.

To operate an external LED, connect the LED cathode to ground and the anode to

pin 5 of the P4 connector. Nominal current through the LED will be 6 mA so a

low-operating current LED should be used. An external resistor is not required.

37

4

SmartSet Tutorial

 Introduction to the SMARTSET Program 37

 Running SMARTSET 38

 Sample SMARTSET Session 41

This chapter will introduce some of the important concepts in touchscreen driver

programming as they relate to the SmartSet controllers. The concepts will be

presented in tutorial form using software accompanying this manual.

INTRODUCTION TO THE SMARTSET PROGRAM

The SMARTSET.EXE program is found on the SmartSet Companion Disk,

included with this manual, or it may be downloaded separately from

www.elotouch.com. The SMARTSET program, (indicated in this manual by

capital letters), requires an IBM PC or compatible running MS-DOS. We

recommend connecting the SmartSet controller to a PC for this tutorial even if

your target platform is not a PC running DOS. Elo’s DOS driver, ELODEV, is not

required.

This tutorial will use the SMARTSET program to go beyond the basic issue of

receiving touchscreen coordinates and demonstrate many of the features of the

SmartSet controller family. These features include on-board calibration,

coordinate scaling, diagnostics, various operating modes, communication

protocols, timers, filtering parameters, and NVRAM. Two-way communication is

38 Chapter 4 - SmartSet Tutorial

used between the host driver software and the controller's firmware for sending

commands and receiving responses.

SMARTSET is useful to driver writers in the following ways:

 SMARTSET can be used to experiment with the functionality of each

command in menu form, display the context-sensitive help, and learn how

each option works in conjunction with others, all before writing any driver

code.

 Once the controller's features are understood, SMARTSET can be used to

examine the underlying command set and communication. SMARTSET can

be used to send and receive packets of data to the controller in binary or ASCII

form. This protocol must be understood before attempting to write driver

code.

 SMARTSET can be used to test the state of a controller. For example, a

programmer can use SMARTSET to verify a driver changed an option

correctly. In fact, most programmers will choose to program controller options

directly from their driver, rather than using SMARTSET.

Besides programmers, others may use SMARTSET in the following ways:

 SMARTSET can be used to customize the controller, saving all details in a

file. Later, the configuration can be loaded from disk directly into the

NVRAM of other controllers. SMARTSET is not required for use with Elo or

third-party driver software. However, special options such as filtering and

timing values can be adjusted with SMARTSET for use with these drivers.

 SMARTSET can be used for diagnostic purposes.

RUNNING SMARTSET

SMARTSET is invoked by typing:

 SMARTSET

at the DOS prompt.

Elo TouchSystems SmartSet(tm) Series Setup Utility Ver. 1.2

Select Interface Type

Serial

PC-Bus

Use ­¯ to move cursor bar, [Enter] to select.

Figure 4-1. SmartSet Utility Interface Selection

Select Serial, PC-Bus, or Micro Channel interface. (A selection for Micro Channel

replaces PC-Bus if you are running on a system with a Micro Channel bus.)

 Running SMARTSET 39

Enter the Base I/O Port address or COM port as requested. SMARTSET locates

the controller and displays the controller's jumper settings as shown below:

Elo TouchSystems SmartSet(tm) Series Setup Utility Ver. 1.2

Select Interface Type

Serial

PC-Bus

Enter Base I/O Port address in hex ([Enter] accepts): 280

 Current Jumper Settings

 Screen type: AccuTouch

 I/O: PC-Bus

 Setup is by: Jumpers

 Mode: Stream

 Interrupt #: None

 Base address: 280

Press any key to continue.

Idle

Figure 4-2. SmartSet Utility Jumper Settings Display

Press a key to display the Main Menu, shown below.

 Elo TouchSystems SmartSet(tm) Series Setup Utility Ver. 1.2

Type: 2201/PC-Bus/AccuTouch ROM Revision: 1.2 Owner ID: EloInc.

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÑÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»

º Main Menu ³ Load/Save Setup º

ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

º L) Load/Save Setup ³ Data Direction: Save º

º ³ Data Source/Destination: To Disk º

º C) Communications ³ º

º M) Touch Mode ³ Setup º

º P) Touch Reporting ³ 2nd Calib/Scaling º

º B) Calibration ³ º

º S) Scaling ³ Program Controller º

º I) Timer ³ º

º F) Filter ³ º

º T) Touch Testing ³ º

º D) Diagnostics ³ º

º R) Reset Controller ³ º

º A) ASCII Setup ³ º

º ³ º

º X) Exit ³ º

ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÏÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ¼

Communication status: Communicating with controller.

Help-[F1]: Use ­¯® to move cursor bar, [Enter] to select/modify.

Smartset is: Idle

Figure 4-3. SmartSet Utility Main Menu

The top of the screen shows the version of the SMARTSET program, the type of

controller and touchscreen, the ROM revision level of the controller firmware,

and the Owner ID string, factory set to "EloInc." unless you have a special OEM

configuration.

NOTE

A warning message is displayed if the controller is not detected. You may proceed

to the Main Menu and SMARTSET will assume default settings for all controller

parameters. You may then change any parameters and save all settings to a disk

file. This file can later be transferred to a connected controller. If you change the

communication parameters from the Main Menu, SMARTSET will attempt to

establish communication with the controller again.

40 Chapter 4 - SmartSet Tutorial

The bottom of the screen contains some status information which is updated after

each command. The Communication Status indicates if SMARTSET is

communicating with a connected controller. The communication status may

change if communication parameters are changed. The bottom line says "Idle" if

SMARTSET is ready to accept a command, or indicates a command is in

progress. The help line gives context sensitive help on the highlighted command.

Additional information can be displayed for the highlighted command at any time

by pressing the [F1] key.

The left half of the screen, the Main Menu, lists categories of available controller

commands. The right half, or submenu, lists available controller commands for

each category and their current setting. Use the ↑ ↓ arrow keys to move the

highlighting up or down on the Main Menu. The submenu changes with each

category. Press the right arrow key or [Enter] to move the highlighting to the

submenu for the highlighted category. Press the left arrow to move back. When

the highlighting is in the submenu, controller parameters may be changed. Hot

keys indicated for the Main Menu categories may be used to jump quickly from

submenu to submenu.

Take a moment to move through the menus using the arrow keys and hot keys.

Press [F1] for help on any category or controller command. Do not change any

settings yet.

Main Menu Categories

The Main Menu includes the following categories, described in general below. All

commands will be detailed later in this manual.

Load/Save Setup Lets you load and save controller settings to disk and/or

nonvolatile RAM (NVRAM). Saving settings to NVRAM

will change the controller's power-on defaults, unless the

controller is booting from jumper settings. Saving settings

to disk will allow other controllers to be quickly

programmed to the identical settings. Multiple controllers

can be programmed identically by loading settings from

disk, then saving those settings in NVRAM.

Communications Lets you examine and change the parameters for

communication with the SmartSet controllers. The

parameters and their use vary depending on the interface.

Touch Mode Various options can be selected for which portions of a

touch will be reported. You may select the initial touch

point, the last point touched (the untouch point), the entire

stream of intervening points (stream points), intervening

 Sample SMARTSET Session 41

points which do not repeat the coordinate value (tracking

points), or combinations of these. Touch coordinates may

be trimmed and scaled to specified ranges.

Touch Reporting Used to select various touch reporting options, touch packet

emulation, and low power mode.

Calibration A touchscreen calibration sequence may be performed, or

calibration points specified manually. X and Y axes may be

swapped.

Scaling Touch coordinate scaling ranges can be specified with any

axis inversion.

Timer Lets you select and configure the on-board timer features of

the controller.

Filter Allows you to select low-level filtering parameters for

optimizing controller performance for extreme

environments.

Touch Testing Allows you to test the touchscreen and see the data

transmitted by the controller.

Diagnostics Runs the various on-board diagnostic routines.

Reset Controller Performs a soft or hard reset on the controller.

ASCII Setup Lets you communicate directly with the controller by

entering command packets with the keyboard. By manually

communicating with the controller and studying its

responses, you can learn the details of the host-controller

interaction.

Exit Exits the SMARTSET program.

SAMPLE SMARTSET SESSION

We will now proceed to configure some basic operating parameters of the

SmartSet controller. The SMARTSET program will be used to change settings

and examine their effects. Press [F1] for on-line information for each command,

or refer to Chapter 6 for detailed information.

42 Chapter 4 - SmartSet Tutorial

Enabling Touch Reporting

First confirm touch reporting is enabled by pressing "P" for the "Touch Reporting"

menu, then moving the highlighting to "Touch Reporting" and press [Enter] so

"Report" is indicated. (Only serial controllers power-on enabled).

Skip to Touch Testing by pressing "T". Touch the touchscreen. X and Y

coordinates will be displayed for the position of your touch, as well as a constant

Z-axis value will vary with pressure on IntelliTouch screens, or remain constant

on AccuTouch screens.

 Press [Esc] to get back to Main Menu

 Touch packet format: SmartSet Binary

 X Y Z Status: Touch Flag:

 1271 1861 255 1 Initial

 1268 1862 255 2 Stream

 1266 1859 255 2 Stream

 1267 1857 255 2 Stream

 1282 1856 255 2 Stream

 1282 1854 255 4 UnTouch

 901 2206 255 1 Initial

 904 2207 255 2 Stream

 900 2204 255 2 Stream

 912 2211 255 4 UnTouch

 752 2418 255 1 Initial

 748 2423 255 2 Stream

 760 2406 255 2 Stream

 760 2406 255 4 UnTouch

Figure 4-4. SmartSet Utility Touch Testing Display

The Touch Flag indicates whether a touch coordinate is for the point of Initial

touch, the point of release (Untouch), or points between those events (Stream).

Changing the Touch Mode

The SmartSet controller can be configured so it reports any combination of these

types of events. Press [ESC] to exit the Touch Testing screen, and "M" to enter

the Touch Mode submenu. Use the arrow keys and [Enter] to enable various

combinations of "Initial Touches", "Stream Touches", and "Untouches". Type "T"

to return to the Touch Testing screen to examine their effects.

Return the controller to the "Enabled" setting for "Initial Touches", "Stream

Touches", and "Untouches".

Calibration

The need for calibration is unique to the touchscreen. Unlike mouse or keyboard

applications where the cursor is part of the image, a touchscreen is a physical

overlay with an independent coordinate system. Only by knowing the position of

the image can the touchscreen coordinates be converted into image coordinates.

 Sample SMARTSET Session 43

Besides the differences in touchscreens and controllers, calibration also

compensates for the variation in video image among displays. The image is

affected by horizontal and vertical adjustments on the monitor and by the physical

mounting of the touchscreen.

Additional calibration complications include image blooming, where bright-

colored images expand, and the "pin cushion" effect, which causes the corners of

the display to be stretched. Poor display linearity can cause similarly-sized boxes

to be larger at the edges of the screen than they are in the middle, or vice-versa.

The displayed image can also be tilted. Even changing video modes can affect the

screen size.

Perfect calibration cannot be achieved in all circumstances. For example, the user

can encounter parallax problems with a change in position, or because the present

user is not the same stature as the person who calibrated the screen.

Even the most sophisticated calibration techniques can only partially overcome

such variations. Therefore, most touchscreen software uses only a two or three-

point calibration sequence and instead relies on well-placed touch zones and

appropriate user feedback.

The three-point calibration sequence used by the SMARTSET program

automatically corrects inverted touchscreen installations and backwards cable

connections.

Type "T" and locate the corner where the X and Y values of the touchscreen are

lowest. This is the default origin of the touchscreen coordinate system. The X and

Y coordinates increase as you move to the diagonally opposite corner. Because the

coordinate values at the extremes of the touchscreen vary with every touchscreen

and controller combination, touchscreen coordinates are only useful if mapped to

the coordinate system of the image behind the touchscreen.

For example, your touchscreen may have its origin in the lower-left corner and

have a coordinate system ranging from 352,536 to 3715,3550. The active area of

the touchscreen will usually extend beyond the image, into the overscan area of

video displays. Your image may have its origin in the upper-left corner and have a

coordinate system from 1,1 to 80,25.

In Figure 4-5, page 44, Rx and Ry denote the raw coordinate system of the

touchscreen controller, and Sx and Sy denote the coordinate system for the screen

image. Rxlow, Rylow, Rxhigh, and Ryhigh are the calibration points for the

position of the image in raw coordinates. Given point Cx and Cy in raw

coordinates, the X and Y values must be determined in screen coordinates.

44 Chapter 4 - SmartSet Tutorial

Figure 4-5. Calibration Point Coordinates

We will now use the on-board calibration and scaling features of the SmartSet

controller so coordinates will be reported in the coordinate system of your image.

(If you do not wish to use this feature of the SmartSet controller, Appendix B

gives generalized calibration and scaling algorithms that a driver program can

use.)

Go to the Calibration submenu. Note the default calibration points are 0-4095 for

each axis. Choose "Do Calibration", type "C" to calibrate in 80x25 text mode, and

touch the three points indicated.

When you complete the calibration sequence and return to the menu, the

calibration points have been changed. The new calibration points are the

coordinates of the upper-left and lower-right corners of the 80x25 image.

If the default orientation of your touchscreen had the origin in the lower-left

corner, as is typical, the calibration points will reflect a change in orientation by

having a low value greater than the high value in the Y axis. If your origin was in

the upper-right, the X values will be reversed. The process of calibration not only

defines the position of your image, it also aligns the origin of the touchscreen

coordinate system with that of the image. This is called hardware axis inversion.

In general, the first calibration point becomes the origin.

The third calibration point was used only to detect swapped axes. This can correct

inverted cabling or touchscreens rotated 90°. Normally after calibrating, the X/Y

Axis field indicates Normal, not Swapped.

You may have noticed that the calibration routine did not acquire its calibration

points in the corners of the video image. The points taken are offset from the

corners, then extrapolated to achieve an estimated value at the corners. This is

because the image on some monitors is not very linear, and usually least linear in

the corners, due to the "pin cushion" effect. By acquiring calibration points near

 Sample SMARTSET Session 45

the corners instead of at the corners, more of the video will be closely calibrated

with the touchscreen.

The calibration routine used by SMARTSET lets you select a video mode

supported by your display before you calibrate. As the screen size and position

may vary among video modes, you should calibrate in the video mode used by

your application. For our example, we calibrated in text mode.

Typically, touchscreen driver developers will write their own calibration routine

rather than using this feature of SMARTSET. Later in this manual, sample source

code for a calibration program is given.

Now Enable the Calibration Mode on the Touch Mode submenu. The calibration

points are ignored until Calibration Mode is enabled.

Return to the Touch Testing screen. Notice that the origin is now in the upper-left

corner, and the coordinate is approximately 0,0 at the edge of the image, and

4095,4095 at the lower right corner of the image. If you touch beyond the image

in the overscan area, you will see negative coordinates in the upper left, and

coordinates greater than 4095,4095 in the lower right.

Range Checking Mode

Next, Enable Range Checking on the Touch Mode submenu. This mode instructs

the controller to check if a touch is within the calibrated area or in the overscan

area.

Return to the Touch Testing screen again. Now the controller indicates "out of

range" by adding 40 to the Status field when you touch the overscan area. Range

Checking does not affect the coordinates. The only effect is a slight degradation in

coordinate throughput because the controller has to perform additional analysis.

Trim Mode

Enable Trim Mode on the Touch Mode submenu. This mode instructs the

controller to push the coordinates of a touch in the overscan area to the edge of the

calibrated area. In most applications, a touch in the overscan area should be

accepted as a valid touch in the closest touch zone on the edge of the image. Trim

Mode only works if Range Checking is also Enabled.

Return to the Touch Testing screen again. The Status still indicates "out of Range"

when you touch the overscan area. However, the coordinates are trimmed to 0,0

and 4095,4095 at the extremes.

46 Chapter 4 - SmartSet Tutorial

Scaling

The process of scaling is similar to that of calibration. Usually it is desired to map

the touch coordinates into a range other than the controller's default range of 0 to

4095. For our example, we will want coordinates scaled to values of 1 to 80

horizontally and 1 to 25 vertically.

Select the Scaling submenu by pressing "S". Change the X Low value to 1, the X

High to 80, the Y Low to 1, and the Y High to 25.

Now return to the Touch Mode submenu and enable Scaling. The scaling values

are ignored until Scaling Mode is enabled.

On the Touch Testing screen, observe how the coordinates are scaled to 80x25.

The combination of calibration and scaling now make the touch coordinates

match the image coordinates. A touch on the touchscreen now reports the

character location on the image. This is the mode where the touchscreen data is

most useful to an application.

Axis Inversion

The coordinate scaling values can be signed numbers from -32767 to +32768. If

the low scale value is greater than the high value, software axis inversion is

indicated. Software axis inversion is performed after any automatic hardware axis

inversions directed by the calibration points. For example, the corrected hardware

origin may be the upper left, but on one application screen, 1st Quadrant

1000x1000 Cartesian Coordinates may be desired with the origin in the lower left.

Simply set the scaling values 0-999 and 999-0 for X and Y. The calibration points

do not need to be changed.

Each axis may also be inverted by selecting the Orientation command on the

Scaling submenu.

Saving the Setup

Once all controller parameters have been configured with the SMARTSET

program, the Load/Save Setup command may be used to load and save the settings

to disk and/or nonvolatile RAM (NVRAM).

Saving settings to NVRAM will change the controller's power-on defaults, unless

you have an AccuTouch controller which is booting from jumper settings (J7 is

installed).

Saving settings to disk will allow other controllers to be quickly programmed to

the identical settings.

 Sample SMARTSET Session 47

Type "L" to jump to the Load/Save Setup submenu. Select Save for the Data

Direction, and To Disk for the Destination. Move the highlighting to Setup and

press [Enter]. The status line says it is creating or updating the "SmartSet

configuration file".

Before we demonstrate restoring the settings from disk, let's change the settings

by using the Reset command to restore all defaults. Press "R" to jump to the Reset

Menu. Use [F1] to display the differences between Soft Reset and Hard Reset.

Execute a Hard Reset. Depending on OEM options, a Hard Reset may take a few

seconds. Watch the status line until it reports Idle. Scroll through the menus and

verify that the calibration, scaling, modes, and all other parameters are reset.

Now select Load From Disk on the Load/Save Setup submenu. Move the

highlighting to Setup, and press [Enter]. Scroll through the menus and verify that

the calibration, scaling, modes, and all other parameters are restored.

The same procedure is used for loading and saving all parameters from/to

NVRAM. Simply change the Data Source/Destination to NVRAM.

2nd Calibration/Scaling

The SmartSet controllers can also store a secondary set of calibration and scaling

values in NVRAM which can be recalled at any time.

Create a secondary set of calibration and scaling values by changing the values on

the Calibration and Scaling submenus. Now select Save to Disk, highlight 2nd

Calib/Scaling, and press [Enter]. The modified calibration and scaling values are

added to the SMARTSET.DAT file.

Restoring the Setup from Disk will restore the primary calibration and scaling

values. Selecting Load From Disk and 2nd Calib/Scaling will replace the primary

values with the secondary values saved on disk.

The same procedure is used for loading and saving the secondary values from/to

NVRAM. Simply change the Data Source/Destination to NVRAM.

Programming Multiple Controllers

In most applications, more than one touchscreen will be used. The SMARTSET

program includes a feature for quickly configuring power-on defaults on multiple

controllers.

Once a setup has been saved to disk (and optionally secondary calibration and

scaling values), the Program Controller command on the Load/Save Setup

submenu can be used. In one operation, this command loads the setup from disk

48 Chapter 4 - SmartSet Tutorial

and saves it to the controller's NVRAM. The controller can then be replaced with

another controller, and identical settings programmed in one operation.

WHERE TO GO FROM HERE

From the Main Menu, type "R" and select Soft Reset to restore the default settings

of the controller. You may now exit the SMARTSET program by selecting Exit

from the Main Menu.

In the next chapter, we will discuss how data is communicated to the SmartSet

controllers. The ASCII Setup portion of the SMARTSET program will be used to

study this communication and the command structure.

Chapter 6 then describes the commands supported by the SmartSet controllers.

The commands in the SMARTSET program correspond to the controller

command set.

49

5

Software Interface

 Packet Structure 49

 Interface Specifics 53

 Sample Driver Code 59

This chapter describes the communication between the host computer and the

SmartSet controllers. The basic packet structure is introduced and how packets are

sent and received. The SMARTSET utility is used as a demonstration. Specifics

about each interface are given next, followed by a sample driver in machine-

independent C source code.

PACKET STRUCTURE

High-level communication with all SmartSet controllers is through an eight-byte

packet. Packets sent to the controller are called command packets. Packets

received from the controller are called response packets. The command and

response packets are identical for all SmartSet controllers.

For PC-Bus and Micro Channel controllers, packets are transmitted and received

through eight consecutive read/write I/O ports. For serial controllers, the eight-

byte packet is transmitted over the serial line framed by two additional bytes for

synchronization. Specifics on the bus and serial interfaces will be covered later in

this chapter.

50 Chapter 5 - Software Interface

Commands and Responses

The first byte of each packet is the command byte, and the seven remaining bytes

are the data bytes. The command byte is an ASCII character, currently from 'A' to

'T'. Chapter 6, the Command Reference, details each command and response.

A command byte in upper-case indicates a set command to the controller. The

data bytes then alter an internal setting of the controller.

A command byte in lower-case indicates a query command to the controller. The

data bytes in the query command are ignored by the controller. A query command

tells the controller to report the internal settings of the controller as they relate to

the command. The controller reports this data in a response packet.

The format of the response packet is identical to that of the set command,

including the command byte being in upper-case. This allows the host to query a

current setting, modify a specific parameter, and return the same packet to the

controller as a set command. Unused or unknown parameters can be ignored.

The structure for each type of packet is shown below:

 0 1 2 3 4 5 6 7

Query: 'x'

 0 1 2 3 4 5 6 7

Response: 'X'

 0 1 2 3 4 5 6 7

Set: 'X'

Note the command byte (byte 0) is in lower-case for the query command, and is in

upper-case in the response packet and set commands.

Commands and Acknowledgements

Each command sent to a SmartSet controller is confirmed by an Acknowledge

response. This response packet indicates any errors in the command and any other

pending errors. See page 75 in the Command Reference for a list of the possible

error codes.

A typical query/response/set interaction flows as follows:

 Packet Structure 51

 Host sends query command packet
 Controller sends a response packet
 Controller sends an Acknowledge response packet
 Host sends a set command packet
 Controller sends an Acknowledge response packet

The only commands that does not return an Acknowledge response are the Hard

Reset and Quiet-all commands.

Let's use the SMARTSET utility to demonstrate this interaction. Type:

 SMARTSET

at the DOS prompt, select your interface, and proceed to the Main Menu. (For

more information on using SMARTSET, see Chapter 4.)

Make sure touches are enabled by typing "P". (PC-Bus and Micro Channel

controllers are not enabled by default). Change Touch Reporting to Report as

necessary.

Next select the Touch Mode submenu by typing "M". Initial Touches, Stream

Touches, and Untouches should all be Enabled.

Now type "A" for ASCII Setup. Touch the touchscreen and notice the stream of

packets received by SMARTSET. A sample display is shown in Figure 5-1, page

52.

The "T" in byte 0 indicates the packets are Touch packets. Refer to page 110 for

detailed information on the contents of the Touch packet. Byte 1 contains the

Status bits, the X coordinate is the Intel (byte swapped) integer formed by bytes 2

& 3, Y is in bytes 4 & 5, and Z follows in bytes 6 & 7. As you move your finger,

bytes 2-5 should change. Byte 1 should indicate your Initial Touch, Stream

Touches, and Untouch with 1, 2, and 4 respectively. These values correspond to

the bit positions defined for the Touch packet on page 110. Bytes 6 & 7 are

constant on AccuTouch controllers as they do not support a Z-axis (pressure).

52 Chapter 5 - Software Interface

 Press [ESC] to get back to Main Menu.

 1) Enter any ASCII character from the keyboard. (except '$')

 2) Enter a '$' and two hex digits. eg. $01, $0a, $ff

B0 B1 B2 B3 B4 B5 B6 B7: Byte positions Touch packet format: SmartSet Binary

54 01 01 0C F4 02 FF 00 T.......

54 02 00 0C E4 02 FF 00 T.......

54 02 02 0C E4 02 FF 00 T.......

54 02 03 0C E4 02 FF 00 T.......

54 02 04 0C E4 02 FF 00 T.......

54 02 06 0C E6 02 FF 00 T.......

54 02 05 0C E5 02 FF 00 T.......

54 02 01 0C E3 02 FF 00 T.......

54 02 01 0C E7 02 FF 00 T.......

54 02 01 0C E4 02 FF 00 T.......

54 04 FC 0B FA 02 FF 00 T.......

Figure 5-1. SmartSet Utility ASCII Setup Display with Touch Packets

Next, let's send a command to the controller. Type "m" and press [Enter].

Commands in lower-case indicate a query. The Mode command is described on

page 96. Pressing [Enter] causes SMARTSET to fill any unentered bytes will

nulls, and transmit the complete packet to the controller.

 Press [ESC] to get back to Main Menu.

 1) Enter any ASCII character from the keyboard. (except '$')

 2) Enter a '$' and two hex digits. eg. $01, $0a, $ff

B0 B1 B2 B3 B4 B5 B6 B7: Byte positions Touch packet format: SmartSet Binary

54 01 01 0C F4 02 FF 00 T.......

54 02 00 0C E4 02 FF 00 T.......

54 02 02 0C E4 02 FF 00 T.......

54 02 03 0C E4 02 FF 00 T.......

54 02 04 0C E4 02 FF 00 T.......

54 02 06 0C E6 02 FF 00 T.......

54 02 05 0C E5 02 FF 00 T.......

54 02 01 0C E3 02 FF 00 T.......

54 02 01 0C E7 02 FF 00 T.......

54 02 01 0C E4 02 FF 00 T.......

54 04 FC 0B FA 02 FF 00 T.......

6D m.......

4D 00 87 00 00 00 00 00 M.......

41 30 30 30 30 00 00 00 A0000...

Figure 5-2. SmartSet Utility ASCII Setup Showing Mode Query

Notice that the Mode query returned a Mode response followed by an

Acknowledge response. Byte 2 of the Mode response is 87 (hex), indicating the

Initial Touch, Stream, and Untouch bits are set, corresponding to what we

observed on the Touch Mode submenu.

Let's change the controller into Single-Point Mode by clearing the Initial Touch

and Stream bits in the Mode packet. Type "M", "$00", "$81", [Enter]. Note the

command byte is in upper-case because this is a set command. The '$' keystroke

signals SMARTSET that you are entering a binary value in hex, rather than an

ASCII value. Note the controller returns an Acknowledge response after the set

command. If the "A" is followed by anything but '0's, refer to page 75 for a list of

possible error codes. Retry the Mode set command as necessary.

Now touch the touchscreen again to verify you selected Single-Point Mode. Press

[ESC] and return to the Main Menu. Examine the Mode settings and you will see

that SMARTSET reflects the changes you made manually in ASCII Setup. When

 Interface Specifics 53

writing a driver, the SMARTSET utility is valuable for understanding the

query/response/set interaction for the various commands and for verifying the

settings you program into the controller.

You may wish to experiment with other queries in ASCII Setup. Type "o" to

query the Owner string. Type "g" to download the whole configuration of the

controller. You should be able to identify each packet and their contents by

referring to Chapter 6.

From the Main Menu, type "R" and select Soft Reset to restore the default settings

of the controller. Exit SMARTSET.

In the next section, we will detail the communication at an even lower level—the

specifics for each type of interface: serial, PC-Bus, and Micro Channel. The

SMARTSET utility hides these details, just as you may hide them at a certain

level when developing a driver that supports multiple interfaces.

INTERFACE SPECIFICS

Serial Controllers

The serial interface uses the eight-byte packet with an additional Lead-in byte and

a trailing Checksum byte for a total of ten bytes.

 <Lead in byte><8-byte Command or Response><Checksum byte>

An optional Key byte may also be included. See page 54 for more information.

Lead-in Byte

The Lead-in byte is used to signal the start of a packet. The standard Lead-in byte

is an ASCII 'U' (55h). This character was chosen due to its distinctive alternating

bit pattern.

The Lead-in byte is different if the optional Key byte is included in the packet. See

Key Byte, page 54, for more information.

Checksum Byte

The trailing Checksum byte may be used to validate the serial communication and

to synchronize with the received data stream.

The Checksum is calculated as follows:

 Checksum byte = <AAh> + <Lead in byte> + <8 Data bytes>

54 Chapter 5 - Software Interface

where the addition is performed with 8-bit unsigned numbers and overflow is

ignored.

By default, the host is not required to send a properly calculated Checksum in

command packets. A dummy value, such as 0, is required to provide the correct

packet length.

If a higher confidence is needed in the serial communications, the host may use

the Parameter command, (see page 102), to enable Checksum verification by the

controller. With this function enabled, the controller checks each command packet

for a valid Checksum value before processing the command.

Key Byte

An optional format, available on some controllers, extends the standard serial

packet by adding a Key byte. This extended packet is used in specialized

installations where more than one serial controller is to be connected on a single

serial communication link. In such an installation, a unique Key value may be

programmed into each controller with the Key command, (see page 94), and

stored in NVRAM.

A command intended for only one of the interconnected controllers is sent in an

extended packet. Although all controllers on the link receive the command, only

the one with the matching Key processes the command. If a standard packet is

sent along the link, all the interconnected controllers will process the command (it

acts as a global command).

Similarly, responses from each controller contain the programmed Key byte. This

permits the host to discriminate between touch data generated by the controllers.

As there is no standard way of allowing the controllers in this type of installation

to send data on the same serial data line, a custom wired OR configuration is

necessary for the hardware to function properly. The controllers must also have

automatic touch reporting disabled with the Mode command and be polled with a

Touch query issued to each controller. See Touch command, page 110. Other

hardware considerations must also be evaluated when attempting this type of

installation.

The structure of the extended serial communications packet is:

<Lead In byte><8 byte Command or Response><Key byte><Checksum byte>

The Lead In byte of an extended packet is an ASCII Control-V character (16h).

The host can check for either a 'U' or ^V as the Lead-in byte. If the byte is a 'U',

the host knows 9 bytes will follow. If the byte is a ^V, 10 bytes will follow.

 Interface Specifics 55

As with the standard packet, the Checksum is calculated by summing the bytes

without regard to overflow. The Key byte is included in the sum.

Checksum byte = <AAh> + <Lead in byte> + <8 Data bytes> + <Key byte>

The Key byte is not used by factory default.

Software Handshaking

Some controllers recognize the software flow control convention of XON/ XOFF

(ASCII "Control Q" and "Control S"). If the host sends a ^S character to the

controller, outside the context of a command packet, the controller will stop

sending data to the host. Upon receipt of a ^Q, the controller will once again be

enabled to send data to the host.

The controller can also send XOFF/XON characters to the host as a software

handshaking method. Upon receipt of a valid command, a ^S character may be

sent to the host. When the command is processed completely, a corresponding ^Q

is sent. This will allow devices which do not properly handle hardware

handshaking signals to use software flow control.

Software handshaking may be enabled or disabled with the Parameter command

(see page 102). It is disabled by factory default.

Hardware Handshaking

The controller supports hardware handshake signals typically implemented in EIA

RS-232 communications. If the handshaking signals are not connected, the

controller defaults to a transmit-enabled mode.

If the handshaking signals are connected, the following protocol should be used:

The signal DSR (Data Set Ready) is kept asserted by the controller. This signal

indicates to the host that a controller is present and powered on.

The signal DTR (Data Terminal Ready) tells the controller that the host is present.

The controller will only transmit if DTR is asserted by the host. Typically, the

host should keep DTR asserted.

When the controller receives a valid command, it de-asserts the handshaking

signal CTS (Clear To Send). The host should suppress further output until the

controller has processed the command and is ready to receive another, indicated

by when it asserts CTS.

The host should assert RTS (Request To Send) when it is ready to accept data, and

de-assert RTS when it cannot accept data. Typically, the host will de-assert RTS

56 Chapter 5 - Software Interface

while it is processing a complete packet, then reassert RTS when it is ready to

receive another packet.

To ease troubleshooting of the initial installation, jumper J3 can be used to force

the controller to ignore hardware handshaking.

On some controllers, Hardware handshaking may also be enabled, disabled, or

inverted with the Parameter command (see page 102). It is enabled by factory

default.

Duplex

When full-duplex is selected, each character sent to the controller is echoed.

When half-duplex is selected, the controller does not retransmit each received

character.

Full-duplex mode is useful when a dumb terminal, also in full-duplex mode, is

used to manually test or set up the controller. Half-duplex mode is used if the

terminal is also in half-duplex mode.

Half-duplex mode is normally used when software is communicating directly with

the controller.

Full or half-duplex is selected with the Parameter command (see page 102). Half-

duplex is the factory default.

 Interface Specifics 57

Bus Controllers

The PC-Bus and Micro Channel SmartSet controllers use read/write I/O ports for

communicating the eight-byte packet. The Micro Channel controller is obsolete.

Base I/O Port

The Base I/O Port is the location of first I/O port through which the controller and

the host exchange data. The Base I/O Port is selected from jumpers or NVRAM

with the E271-2201 PC-Bus controller, and through "automatic configuration"

with the E271-2202 Micro Channel controller. For more information on Base I/O

Port selection, see Chapter 2.

A block of eight consecutive ports are used for the eight-byte packet. They are

denoted as "Base Port", "Base Port + 1", etc., through "Base Port + 7".

To receive a packet from the controller, the host reads the eight I/O ports in

ascending order starting with the Base Port. The controller senses the completion

of the transfer when all eight ports have been read.

To send a packet to the controller, the host writes to the same eight I/O ports in

ascending order starting with the Base Port. The controller processes the

command after all eight ports have been written. A command received by the

controller takes priority over any background processing. This includes the

processing of another command. Therefore, the host must wait for an

Acknowledge response before issuing another command.

The controller informs the host that data is available by clearing a status bit and

optionally asserting an interrupt request line (IRQ). This allows the host driver

software to be polled or interrupt-driven.

Polled Mode

Polled Mode is commonly used in computer systems which do not have a

hardware interrupt signal available to assign to the touchscreen controller. Polled

drivers are easier to write but do not allow multi-tasking or event-driven

programming. (Elo drivers are interrupt-driven).

Bit 7 of the Base Port (the command byte), is the Not Ready bit. If the host is

polling the controller, it should wait until the Not Ready bit is 0 before reading the

remaining bytes. This negative logic is used so bit 7 does not need to be cleared in

response packets before they are resent to the controller as set commands. It also

makes packets received from bus controllers identical to those received from

serial controllers.

58 Chapter 5 - Software Interface

Interrupt Mode

If Interrupt Mode is enabled either by jumpers or software setup, the controller

asserts the selected IRQ signal when data becomes available (as it clears the Not

Ready bit). It is not necessary for the host to poll the Not Ready bit in Interrupt

Mode. Upon interrupt, the host jumps to a corresponding interrupt service routine

(ISR) whose location is stored in its interrupt vector table. The ISR retrieves the

data from the controller and then returns to the interrupted process. A full

discussion on writing interrupt-driven code is language and operating system

dependent, and is beyond the scope of this manual. It is possible to setup the

controller through polling, then switch to interrupt-driven code to receive touch

packets.

PC-Bus Interrupt Specifics

An IRQ signal can be used by only one device at a time in the PC architecture. It

is possible, however, for the E271-2201 PC-Bus controller to share an IRQ signal

with another device if the other device can release (tri-state) its interrupt line

drivers. Most serial and parallel controllers on the PC have this feature (see the

IBM Technical Reference Manuals).

To share an IRQ, the E271-2201 controller should be programmed to use the IRQ

only when the other device is tri stated. When the other device needs the IRQ, the

host must reprogram the E271-2201 to IRQ0 (Polled Mode). This way, only one

device is driving the interrupt line at a time.

The E271-2201 is shipped without an IRQ jumpered. For information on selecting

an interrupt, see Chapter 2. For the most flexibility, an interrupt-driven driver

should use the Parameter command (see page 102) to select an interrupt as the

driver is loaded.

 Sample Driver Code 59

SAMPLE DRIVER CODE

The rest of this chapter provides sample application and driver code for SmartSet

touchscreen controllers. The example source code is written in ANSI C, and can

be found on the SmartSet Companion Disk included with this manual, or available

for download on www.elotouch.com. The code is organized in modules as

follows:

Figure 5-3. Example Code Organization

EXAMPLE1.C and EXAMPLE2.C are sample applications. Each uses high-level

interface-independent controller interface functions in PACKET.C, such as

querycommand() and setcommand(). The interface-dependent functions are

supplied in SERIAL.C for the E271-2210 or 2500S serial controllers, or BUS.C

for the E271-2201 PC-Bus controller and the E271-2202 Micro Channel

controller.

BUS.C contains some code that is Micro Channel specific. This code is

commented for easily deletion if support on this architecture is not required.

SERIAL.C is written to be machine-independent. The PC-dependent serial port

configuration and character input/output code is given in PC_COMM.C.

PC_MISC.C contains miscellaneous PC-dependent code to clear the screen, hide

the cursor, etc. PC_COMM and PC_MISC can be rewritten for other

architectures. Source code for all modules is included in this chapter, except for

PC_COMM.C and PC_MISC.C.

60 Chapter 5 - Software Interface

Example1 - Display Controller Defaults and Raw Touch
Coordinates

EXAMPLE1.C polls Elo SmartSet touchscreen controllers. The controller ID,

jumper settings, and power on diagnostics results are displayed, as shown in

Figure 5-4 below. Raw touch coordinates are then displayed, along with the status

flag, indicating initial touch, stream touches, and untouch.

C:\>example1

ID:

 Controller revision level: EloInc. 1.2

 Z axis: Not available

Jumper settings:

 Touchscreen type: AccuTouch

 Interface: PC-Bus

 Boot from: Jumpers

 Mode: Stream

 Interrupt: 0

 Base address: 280

Touch screen for polled [X Y Z Status] output.

Press any key to abort...

 1203 2846 255 1

 1376 2691 255 2

 1651 2457 255 2

 1903 2272 255 2

 2280 1980 255 2

 2515 1773 255 4

Figure 5-4. EXAMPLE1.C Output

In the following source code, initcontroller(), defined in SERIAL.C or BUS.C,

detects and initializes the controller. An error condition aborts the program with a

message describing the problem. The querycommand(), checkdiags(), and

gettouch() functions are defined in PACKET.C. Source code for these modules is

included later in this chapter. Refer to the Command Reference in Chapter 6 for

the structure of the Owner, ID, Jumpers, and Diag packets used in

displayjumpers().

/***

EXAMPLE1.C

 Polls Elo SmartSet touchscreen controllers.

 Displays controller ID, jumper settings, and raw touch coordinates.

**/

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "packet.c" /* SmartSet interface independent code */

#include "pc_misc.c" /* miscellaneous PC dependent code */

void displayjumpers(void);

/***/

int main(void)

{

 int x,y,z,flags;

 initcontroller();

 checkdiags();

 displayjumpers();

 printf("\nTouch screen for polled [X Y Z Status] output.\n");

 printf("Press any key to abort...\n");

 do {

 if (gettouch(&x,&y,&z,&flags))

 printf("%6d%6d%6d%6X\n",x,y,z,flags);

 } while (!kbhit());

 Sample Driver Code 61

 while (kbhit()) /* flush keystroke */

 getch();

 disablecontroller();

 return(0);

}

void displayjumpers(void)

{

 int i;

 packettype id,owner,jumpers;

 printf("ID:\n");

 id[0] = 'i'; querycommand(id);

 owner[0] = 'o'; querycommand(owner);

 printf(" Controller revision level: ");

 for (i=1; i<8; i++)

 printf("%c",owner[i]);

 printf(" %d.%d\n",id[5],id[4]);

 printf(" Z axis: ");

 if (id[3] & 0x80)

 printf("Available\n");

 else

 printf("Not available\n");

 printf("Jumper settings:\n");

 jumpers[0] = 'j'; querycommand(jumpers);

 printf(" Touchscreen type: ");

 switch(jumpers[1]) {

 case '0': printf("AccuTouch\n"); break;

 case '1': printf("DuraTouch\n"); break;

 case '2': printf("IntelliTouch\n");

 }

 printf(" Interface: ");

 switch(jumpers[2]) {

 case '0': printf("Serial\n"); break;

 case '1': printf("PC-Bus\n"); break;

 case '2': printf("Micro Channel\n");

 }

 printf(" Boot from: ");

 if (jumpers[3] == '0') printf("Jumpers\n");

 else printf("NVRAM\n");

 printf(" Mode: ");

 if (jumpers[4] == '0') printf("Single Point\n");

 else printf("Stream\n");

 if (jumpers[2] == '0') { /* serial controller */

 printf(" Hardware handshaking: ");

 if (jumpers[6] == '1') printf("Enabled\n");

 else printf("Disabled\n");

 printf(" Output format: ");

 if (jumpers[7] == '0') printf("ASCII\n");

 else printf("Binary\n");

 }

 else {

 printf(" Interrupt: %d\n", jumpers[5]);

 printf(" Base address: %X\n", jumpers[6]+(jumpers[7] << 8));

 }

}

#include "bus.c" /* for E271-2201 and E271-2202 */

/* #include "serial.c" */ /* for E271-2210 and 2500S */

62 Chapter 5 - Software Interface

Example2 - Calibrate and Finger Paint

EXAMPLE2.C also polls Elo SmartSet touchscreen controllers. The controller is

first set up for calibration by changing the Mode to report raw coordinates. The

calibration screen appears as follows:

XX

X X

X X

X * X

X X

X X

X X

X X

X X

X X

X X

X Touch the following points from a X

X position of normal use, e.g. a sitting X

X person of average height and reach. X

X You will hear a beep after each touch. X

X X

X X

X X

X X

X X

X X

X X

X X

X X

XX

Figure 5-5. EXAMPLE2.C Calibration Screen

A three-point calibration sequence is used. The touch points are taken near the

corners of the screen image, then extrapolated to the actual edges of the image.

This reduces the effects on calibration of "pin cushion" and other non-linearities at

the edges of the image. The calibration sequence causes the origin to be in the

upper-left, regardless of the orientation of the touchscreen. Untouch coordinates

are used in the calibration, so the user can carefully position their finger before

release.

The program then displays the results of the calibration, important information if

troubleshooting is necessary:

Calibration points are: 445,3362, 3563,722

Y axis inverted.

Orientation adjusted.

Press a key to proceed to finger painting...

Figure 5-6. EXAMPLE2.C Calibration Results Output

Next, the controller is programmed for 80x25 Scaling and the Mode is set to

Calibration, Scaling, Trim, and Stream. The point of touch can now be mapped to

the display, as in this example:

 Sample Driver Code 63

 * *

 * *

 *

 * * * *

 * * *

 * * * *

 *

 * * * *

 * *

 * * *

 * *

 * *

 *

 * *

 * *

 * * *

Figure 5-7. EXAMPLE2.C Finger Painting

In the following source code, the Mode, Calibration, and Scaling commands are

queried, modified, then set. This preserves the contents of reserved bytes. Refer to

the Command Reference in Chapter 6 for details on each command.

/***

EXAMPLE2.C

 Polls Elo SmartSet touchscreen controllers.

 Acquires calibration points through extrapolation.

 Sets calibration, scaling, and mode in controller.

 Finishes with 80x25 finger painting.

**/

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "packet.c" /* SmartSet interface independent code */

#include "pc_misc.c" /* miscellaneous PC dependent code */

void getcalibration(int *xlow, int *xhigh,

 int *ylow, int *yhigh, boolean *xyswap);

void getpoint(int x, int y, int *tx, int *ty);

void outstr(int x, int y, char *s);

void xch(int *i1, int *i2);

/***/

int main(void)

{

 int x,y,z,flags,xlow,xhigh,ylow,yhigh;

 packettype packet;

 unsigned *p;

 boolean xyswapflag;

 initcontroller();

 checkdiags();

 /* calibrate touchscreen */

 /* To acquire calibration points, controller must be in raw coordinate

 mode. We use the point of untouch as our calibration point. */

 packet[0] = 'm'; querycommand(packet); /* get current mode */

 packet[2] = 0x84; /* untouch and no Z modes */

 packet[3] = 0x00; /* raw coordinates only */

 setcommand(packet); /* set modes for calibration */

 packet[0] = 'c'; packet[1] = 'S'; /* get swap axes flag */

 querycommand(packet);

 packet[2] = 0; setcommand(packet); /* insure axes are not swapped */

 getcalibration(&xlow,&xhigh,&ylow,&yhigh,&xyswapflag); /* corners of image */

 packet[0] = 'C'; packet[1] = 'X';

 p = (unsigned *)packet; *++p = xlow; *++p = xhigh;

 setcommand(packet); /* set X calibration points */

 packet[1] = 'Y';

 p = (unsigned *)packet; *++p = ylow; *++p = yhigh;

 setcommand(packet); /* set Y calibration points */

 packet[0] = 'c'; packet[1] = 'S'; querycommand(packet);

 packet[2] = (byte)xyswapflag;

 setcommand(packet); /* set swap axes flag as necessary */

 /* set scaling to 1..80, 1..25 */

 packet[0] = 'S'; packet[1] = 'X';

64 Chapter 5 - Software Interface

 p = (unsigned *)packet; *++p = 1; *++p = 80; *++p = 0; setcommand(packet);

 packet[1] = 'Y';

 p = (unsigned *)packet; *++p = 1; *++p = 25; setcommand(packet);

 packet[0] = 's'; packet[1] = 'S'; querycommand(packet);

 packet[2] &= ~0x07; setcommand(packet);/* axis inversion bits not used */

 /* set mode */

 packet[0] = 'm'; querycommand(packet); /* get current mode */

 packet[2] |= 0x47; /* Range Checking, Initial, Stream, Untouch Modes */

 packet[3] |= 0x0e; /* Calibration, Scaling, and Trim Modes */

 setcommand(packet); /* set modes for normal operation */

 /* Calibration, Scaling, and Mode may be stored in on board NVRAM here

 with the NVRAM command. Remove jumper J7 to boot controller from NVRAM. */

 /* finger painting */

 printf("\nPress a key to proceed to finger painting...");

 getch();

 clearscreen(); cursoroff();

 do {

 if (gettouch(&x,&y,&z,&flags))

 outstr(x,y,"*");

 } while (!kbhit()); getch();

 closescreen();

 return(0);

}

void getcalibration(int *xlow, int *xhigh,

 int *ylow, int *yhigh, boolean *xyswap)

/* Returns raw coordinates at upper left and lower right corners of the screen

 image. These points are determined by extrapolation from calibration points

 taken in slightly from the corners. This reduces the effects of "pin cushion"

 on calibration. The third calibration point is used to detect swapped axes

 touchscreen is rotated 90 degrees or cable is connected

 backwards on DuraTouch touchscreens (no longer manufactured by Elo). */

{

 int rightx, leftx, /* position of touch targets */

 uppery, lowery,

 xmin=1,ymin=1,xmax=80,ymax=25, /* screen coordinate system */

 x1, y1, x2, y2, sx, sy, /* raw touch coordinates */

 loop;

 double xunit, yunit; /* # of touch points per screen coord */

 boolean xinv,yinv;

 openscreen(); clearscreen(); cursoroff();

 for (loop = 2; loop <= 79; loop++) { /* draw box indicating video image

extremes */

 outstr(loop, 1, "X"); outstr(loop, 25, "X");

 }

 for (loop = 1; loop <= 24; loop++) {

 outstr(1, loop, "X"); outstr(80, loop, "X");

 }

 screenbase[3840] = screenbase[3998] = (byte)'X'; /* don't scroll */

 outstr(22, 12, "Touch the following points from a");

 outstr(22, 13, "position of normal use, e.g. a sitting");

 outstr(22, 14, "person of average height and reach.");

 outstr(22, 15, "You will hear a beep after each touch.");

 /* To improve sample, we use points close to the edge of the screen image.

 We then extrapolate to the actual edge of the image. */

 leftx = xmax / 8; uppery = ymax / 8 + 1;

 rightx = (xmax / 8) * 7; lowery = (ymax / 8) * 7;

 getpoint(leftx, uppery, &x1, &y1); /* origin */

 getpoint(rightx, lowery, &x2, &y2); /* diagonally opposite corner */

 getpoint(rightx, uppery, &sx, &sy); /* for detecting swapped axes */

 /* compute number of touch points per screen coordinate */

 xunit = (double)(x2 x1) / (rightx leftx);

 yunit = (double)(y2 y1) / (lowery uppery);

 /* extrapolate the calibration points to corner points of screen image */

 *xhigh = x2 + (int)(xunit * (xmax rightx));

 *xlow = x1 (int)(xunit * (leftx xmin));

 if (*xlow < 1) *xlow = 1;

 if (*xhigh < 1) *xhigh = 1; /* in case axis inverted */

 *yhigh = y2 + (int)(yunit * (ymax lowery));

 *ylow = y1 (int)(yunit * (uppery ymin));

 if (*ylow < 1) *ylow = 1;

 if (*yhigh < 1) *yhigh = 1;

 /* these variables now contain the raw coordinates the controller would

 output for the extremes of the video image */

 /* detect touchscreen orientation corrections */

 Sample Driver Code 65

 *xyswap = abs(sx x1) < abs(sy y1);

 if (*xyswap) {

 xch(xhigh, yhigh);

 xch(xlow, ylow);

 }

 xinv = *xhigh < *xlow;

 yinv = *yhigh < *ylow;

 /* display results of calibration useful for troubleshooting */

 clearscreen(); cursoron();

 printf("Calibration points are: %d,%d, %d,%d\n",*xlow,*ylow,*xhigh,*yhigh);

 if (xinv)

 printf("X axis inverted.\n");

 if (yinv)

 printf("Y axis inverted.\n"); /* normal */

 if (*xyswap)

 printf("X and Y axes swapped.\n");

 if (xinv || yinv || *xyswap)

 printf("Orientation adjusted.\n");

 /* Axis inversion is automatically accomplished by the signed arithmetic

 in the controller. The controller must be told to swap axes however. */

}

void getpoint(int x, int y, int *tx, int *ty)

/* display target at x,y, return touch coordinate */

{

 int z,flags;

 outstr(x, y, "*"); /* display target */

 while (!gettouch(tx, ty, &z, &flags)) ;

 outstr(x, y, " \a"); /* remove target, beep */

}

void outstr(int x, int y, char *s)

/* display string at x,y */

{

 cursorxy(x, y);

 printf("%s",s);

}

void xch(int *i1, int *i2)

/* swap integers */

{

 int t;

 t = *i1; *i1 = *i2; *i2 = t;

}

#include "bus.c" /* for E271-2201 and E271-2202 */

/* #include "serial.c" */ /* for E271-2210 and 2500S */

66 Chapter 5 - Software Interface

PACKET.C - Interface-Independent Driver Code

The following code implements high-level functions querycommand() and

setcommand(). The protocol for querying commands, setting commands, and

receiving acknowledgements is described in Chapter 5. Touch packets are sent

automatically (a query is not necessary). The gettouch() function accepts these

packets, and returns the coordinates and status byte. See page 110 for the structure

of the Touch packet.

Functions getpacket() and sendpacket() are implemented in SERIAL.C or BUS.C.

typedef int boolean;

typedef unsigned char byte;

#define FALSE 0

#define TRUE !FALSE

typedef byte packettype[8];

void initcontroller(void);

void disablecontroller(void);

boolean getpacket(packettype packet, byte p);

boolean sendpacket(packettype packet);

boolean querycommand(packettype packet)

/* packet[0] must be in lower case. Issues query command, receives queried

 packet, receives acknowledgement. Returns queried packet.

 Note: Use querycommand() with query AND set Diagnostic command. */

{

 packettype ack;

 return(sendpacket(packet) &&

 getpacket(packet,(byte)_toupper((int)*packet)) && /* command byte returned

in upcase */

 getpacket(ack,'A') && (ack[2] == '0')); /* any errors in acknowledgememt? */

}

boolean setcommand(packettype packet)

/* packet[0] must be in upper case. Issues set command, receives

 acknowledgement. Returns nothing.

 Note: Hard Reset and Quiet all commands do not return an Acknowledgement packet.

*/

{

 packettype ack;

 return(sendpacket(packet) &&

 getpacket(ack,'A') && (ack[2] == '0')); /* any errors in acknowledgememt? */

}

boolean gettouch(int *x, int *y, int *z, int *flags)

/* Poll controller for touch data. Returns TRUE if available or FALSE if timeout.

*/

{

 packettype touch;

 if (getpacket(touch,'T')) {

 *x = touch[2] + (touch[3] << 8);

 *y = touch[4] + (touch[5] << 8);

 *z = touch[6] + (touch[7] << 8);

 *flags = touch[1];

 return(TRUE);

 }

 else

 return(FALSE);

}

#define OK 0

#define NOCONTROLLER 1

#define SHORTED 2

#define CANTSEND 4

#define NORESPONSE 5

#define WRONGRESPONSE 6

void checkdiags(void)

{

 packettype diags;

 diags[0] = 'd'; querycommand(diags);

/* if (diags[1] == 0x20)

 printf("Warning -- touchscreen may not be connected.\n");

 else */

 Sample Driver Code 67

 if (diags[1] != 0) {

 printf("Controller power on diagnostics failed -- code %02Xh\n",diags[1]);

 exit(1);

 }

}

char * errormsg(int errnum)

/* errors generated by SERIAL.C or BUS.C */

{

 switch (errnum) {

 case NOCONTROLLER:

 return("Controller not detected.");

 case SHORTED:

 return("Touchscreen fault -- controller is transmitting continuously.");

 case CANTSEND:

 return("Cannot output to controller.");

 case NORESPONSE:

 return("Controller not responding.");

 case WRONGRESPONSE:

 return("Controller not responding correctly.");

 }

 return("");

}

void quit(char *msg)

/* display error message and abort program */

{

 printf("%s\n",msg);

 exit(1);

}

68 Chapter 5 - Software Interface

SERIAL.C - Machine-Independent Serial Driver Code

The following machine-independent code implements the getpacket() and

sendpacket() functions for the E271-2210 and 2500S serial controllers. Machine-

dependent code to initialize the serial port, enable and disable it, and send and

receive characters, is supplied in a separate module, such as PC_COMM.C (found

on the SmartSet Companion Disk).

The getpacket() function discards all packets until the requested packet is

received. The getanypacketserial() function synchronizes with the packets in the

data stream by looking for a 'U' Lead-in byte and verifying the trailing Checksum

byte. The sendpacket() function computes and transmits the trailing Checksum.

See Serial Controllers, page 53, for information on communicating with serial

controllers.

/************ E271-2210, 2500S controller dependent code *************/

#define COMPORT 1 /* 1 or 2 */

#define BAUDRATE 5 /* 0=300,1=600,2=1200,3=2400,4=4800,5=9600,6=19.2,7=38.4 */

#include "pc_comm.c" /* PC dependant serial communications code */

int initserial(void);

int clearserial(void);

boolean getanypacketserial(packettype packet);

void initcontroller(void)

{

 packettype ack,quiet = {'Q',2,0,0,0,0,0,0};

 int msg;

 if ((msg = initserial()) != OK)

 quit(errormsg(msg));

 if ((msg = clearserial()) != OK)

 quit(errormsg(msg));

 sendpacket(quiet);

 if (!getanypacketserial(ack))

 quit(errormsg(NORESPONSE));

 if (*ack != 'A')

 quit(errormsg(WRONGRESPONSE));

}

int initserial(void)

{

 if (!comport_init(COMPORT, BAUDRATE, 0, 0, 0)) /* NONE, 8, 1 */

 return(NOCONTROLLER);

 return(OK);

}

int clearserial(void)

{

 static packettype ack = {'a',0,0,0,0,0,0,0};

 int count=200, i;

 if (!comport_send(0x11)) /* send ^Q in case handshaked off */

 return(CANTSEND);

 for (i=0; i<10; i++) /* 10 chars to fill any partial packet */

 comport_send(0);

 if (!sendpacket(ack))

 return(CANTSEND);

 do {

 if (getanypacketserial(ack))

 count ;

 else

 return(OK);

 } while (count > 0);

 return(SHORTED);

}

void disablecontroller(void)

/* not needed for serial */

{

}

boolean getpacket(packettype packet, byte p)

{

 Sample Driver Code 69

 for (;;) {

 if (!getanypacketserial(packet))

 return(FALSE);

 if (p == *packet)

 return(TRUE);

 }

}

boolean getanypacketserial(packettype packet)

{

 byte sum=0,c;

 int bidx=0, count=500;

 comport_enable();

 for (;;) {

 if (!comport_receive(&c)) {

 comport_disable(); /* com port timed out */

 return(FALSE);

 }

 switch (bidx) {

 case 0 : /* expecting new packet */

 if (c == 'U') { /* do we have one? */

 sum = 0xAA + 'U'; /* yes initialize checksum */

 bidx++;

 }

 else {

 if (count)

 continue; /* discard character */

 return(FALSE); /* error 500 chars without a packet */

 }

 break;

 case 9 : /* expecting end of packet */

 if (sum == c) { /* does checksum match? */

 comport_disable(); /* yes done */

 return(TRUE);

 }

 bidx = 0; /* no start over */

 break;

 default : /* middle of packet */

 sum += (packet[bidx++ 1] = c); /* store packet data */

 }

 }

}

boolean sendpacket(packettype packet)

{

 int i;

 char c;

 byte sum=0;

 currenttime = getclocktime();

 do

 if (timeout(2))

 return(FALSE);

 while (!comport_xmit_ok());

 for (i= 1; i<9; i++) {

 switch (i) {

 case 1 : /* beginning of packet */

 c = 'U';

 sum = 0xAA + 'U'; /* initialize checksum */

 break;

 case 8 : /* end of packet */

 c = sum;

 break;

 default: /* middle of packet */

 sum += (c = packet[i]);

 }

 if (!comport_send(c)) {

 comport_disable();

 return(FALSE);

 }

 }

 comport_disable();

 return(TRUE);

}

70 Chapter 5 - Software Interface

BUS.C - PC-Bus Code

The following machine-dependent code implements the getpacket() and

sendpacket() functions for the E271-2201 PC-Bus and E271-2202 Micro Channel

controllers. The Micro Channel controller is obsolete.

The getpacket() function discards all packets until the requested packet is

received. The getanypacketbus() function polls the Not Ready bit and reads the

eight I/O ports. The sendpacket() function writes to the I/O ports. See Bus

Controllers, page 57, for information on communicating with bus controllers.

The E271-2202 is located by checking the POS registers for the ID of the

"adapter" in each slot. Once the E271-2202 is located, the Base I/O Port (and

optionally the Interrupt) can be read. This auto-detect procedure can only be run

after a hard system reset, a soft reset (Control-Alt-Delete), or after sending a

Quiet-all command to the E271-2202. Therefore, call disablecontroller() when

you are finished with the controller so others may locate and use it. For more

information on the interrupt 15h BIOS calls used in this code, see the IBM

Personal System/2 and Personal Computer BIOS Interface Technical Reference.

/************ E271-2201, E271-2202 controller dependent code *************/

#define DEFAULTBASEPORT 0x280 /* default base port address of E271-2201 */

#define IBM_ID 0x6253 /* IBM assigned Micro Channel adapter ID for

E271-2202 */

unsigned baseport; /* controller base I/O port */

boolean mca; /* true if Micro Channel */

int initbuscontroller(void);

int clearbuscontroller(void);

boolean getanypacketbus(packettype packet);

boolean checkmca(void);

int findmcacontroller(void);

void resetmcacontrollerpos(void);

void initcontroller(void)

{

 int msg = OK;

 mca = checkmca();

 if (mca) /* are we on a Micro Channel system? */

 msg = findmcacontroller(); /* yes set baseport value */

 else

 baseport = DEFAULTBASEPORT;

 if (msg == OK)

 msg = initbuscontroller(); /* initialize E271-2201 and E271-2202 */

 if (msg == OK)

 msg = clearbuscontroller();

 if (msg != OK)

 quit(errormsg(msg));

}

int initbuscontroller(void)

{

 packettype ack,quiet = {'Q',2,0,0,0,0,0,0};

 byte b;

 b = (byte)inp(baseport) & (byte)0x7f; /* command byte is guaranteed A Z */

 if ((b < (byte)'A') || (b > (byte)'Z'))

 return(NOCONTROLLER);

 sendpacket(quiet); /* enable controller */

 if (!getpacket(ack,'A')) /* any ack? */

 return(NOCONTROLLER);

 return(OK);

}

int clearbuscontroller(void)

{

 int count=250;

 packettype garbage;

 Sample Driver Code 71

 do {

 if (getanypacketbus(garbage))

 count ;

 else

 return(OK);

 } while (count > 0);

 return(SHORTED);

}

void disablecontroller(void)

{

 if (mca)

 resetmcacontrollerpos();

}

boolean getpacket(packettype packet, byte p)

/* discard all packets until we see the packet requested by p */

{

 int i;

 for (i=0; i<10; i++) {

 if (!getanypacketbus(packet))

 break;

 if (*packet == p)

 return(TRUE);

 }

 return(FALSE);

}

boolean getanypacketbus(packettype packet)

{

 unsigned i;

 byte *p;

 currenttime = getclocktime();

 do {

 if (timeout(2))

 return(FALSE);

 } while (inp(baseport) & 0x80); /* not ready */

 for (i=0, p=packet; i<8; i++) /* read 8 consecutive I/O ports */

 *p++ = (byte)inp(baseport+i);

 currenttime = getclocktime();

 do {

 if (timeout(1))

 return(FALSE);

 } while (*packet == (byte)inp(baseport)); /* wait for byte 0 to change */

 return(TRUE); /* so we don't read the same data twice on a fast PC */

}

boolean sendpacket(packettype packet)

{

 unsigned i;

 for (i=0; i<8; i++) /* output to 8 consecutive I/O ports */

 outp(baseport+i,*packet++);

 return(TRUE);

}

/************************** Micro Channel Specific ***********************/

boolean checkmca(void)

/* check if running on MCA */

{

 boolean mca_found = FALSE;

 _asm {

 mov ah,0c0h ; get BIOS ID

 mov bx, 1

 stc

 int 15h

 jc no_mca

 cmp bx, 1

 je no_mca

 test byte ptr es:[bx+5],2

 jz no_mca

 mov mca_found,1

no_mca:

 }

 return(mca_found);

}

int findmcacontroller(void)

{

 unsigned posbase,j;

 byte mcainfo[8],i;

 union REGS regs;

 regs.x.ax = 0xc400;

72 Chapter 5 - Software Interface

 int86(0x15,®s,®s);

 posbase = regs.x.dx;

 for (i=1; i<9; i++) { /* check each slot for 2202 controller */

 regs.x.ax = 0xc401;

 regs.h.bl = i;

 int86(0x15,®s,®s);

 for (j=0; j<8; j++) /* read ID and POS registers */

 mcainfo[j] = (byte)inp(posbase+j);

 regs.x.ax = 0xc402;

 regs.h.bl = i;

 int86(0x15,®s,®s);

 if (((mcainfo[0] + ((unsigned)mcainfo[1] << 8)) == IBM_ID) && /* check ID */

 ((mcainfo[6] + ((unsigned)mcainfo[7] << 8)) == ~IBM_ID)) {

 baseport = mcainfo[3] + ((unsigned)mcainfo[4] << 8);

 /* intrpt = mcainfo[5] & 0xf; */

 return(OK);

 }

 }

 return(NOCONTROLLER);

}

void resetmcacontrollerpos(void)

/* disable controller so it can be detected again through POS registers */

{

 static packettype quiet = {'Q',1,0,0,0,0,0,0};

 sendpacket(quiet); /* no acknowledge on Quiet all command */

}

Interrupt-Driven Code

Interrupt-driven code is hardware and operating system dependent, and is

therefore beyond the scope of this manual. To simplify the code required, you may

use the polled code in the previous examples to locate and set up the controller,

then operate with one-way communication only. The interrupt service routine then

only has to accept Touch packets.

For more information on bus controller interrupts, see Interrupt Mode, page 58.

73

6

Command Reference

 Introduction 73

 Command Descriptions 74

INTRODUCTION

Terms

The following is a glossary of basic terms as they are applied in this chapter:

command packet passed as a message from the host to the controller.

response packet passed as a message from the controller to the host.

command byte leading character in a command packet.

data bytes The remaining seven bytes in a command packet.

set A command issued by the host to the controller requesting

the controller perform a specific action.

query A command issued by the host to the controller requesting

the controller send a response packet containing the

requested data.

integer A logical combination of two bytes to form a single 16-bit

two's-complement signed number. Value range from

74 Chapter 6 - Command Reference

-32768 to 32767. The bytes are ordered in Intel format,

with the least significant byte (low order 8 bits) being first.

word A 16-bit unsigned integer value. The byte ordering is

identical to an integer but the value is interpreted to be in

the numeric range 0-65535.

Notation

The following notation is used in this chapter:

When values are given for data bytes, they are noted as two-place hexadecimal

numbers (denoted by a letter 'h' suffix) or as decimal numbers. When interpreted

as a member of the ASCII character set, a byte is called a character and its value

is shown in single quotes. For example, 49 or 31h is the same as '1'.

Bit values are defined to be either 1 or 0. The terms "true", "set", and "high" are

equivalent to 1. "False", "clear", and "low" are equivalent to 0.

Reserved Bytes

All unused bytes should be null (binary zero). All unused bits should be 0.

COMMAND DESCRIPTIONS

The following pages serve as a reference for the command set of the SmartSet

controller family.

Each page is titled with the command name and command byte(s). An upper-case

command byte indicates a set command is possible. A lower-case command byte

indicates a query is possible.

The packet contents are then given for all possible set and query versions of the

command as well as the possible responses from the controller. The function of

each command and data bytes in the packet are detailed.

 Command Descriptions 75

Acknowledge ('a')

Function: Verifies that a command was received by the controller and no

errors are pending.

 0 1 2 3 4 5 6 7

Query: 'a'

Set: This command cannot be set.

 0 1 2 3 4 5 6 7

Response: 'A' X X X X

An Acknowledge response is automatically sent to the host following each

command received by the controller (with the exception of the Hard Reset and

Quiet-all commands). Command-related errors are indicated in the Acknowledge

response in the X positions. A query is not necessary to acknowledge the

processing of a command.

However, an Acknowledge query is issued to retrieve any pending warnings that

were not related to a command, indicated by the Warning-pending bit in the

Touch packet. An Acknowledge query may also be used to interrupt a pending

process (such as a calibration sequence).

The Acknowledge response contains any pending error codes (up to four), where

any pending warnings appear in the positions denoted by the X's. The possible

errors are given in the following table in both ASCII and hexadecimal notation.

Error Value Meaning
'0' 30h No warning
'1' 31h Divide by zero
'2' 32h Bad input packet
'3' 33h Bad input checksum
'4' 34h Input packet overrun
'5' 35h Illegal command
'6' 36h Calibration command cancelled
'7' 37h Reserved (contact Elo)
'8' 38h Bad serial setup combination
'9' 39h NVRAM not valid - initializing
':' 3ah Reserved
';' 3bh Reserved
'<' 3ch Reserved
'=' 3dh Reserved
'>' 3eh Reserved
'?' 3fh Reserved

76 Chapter 6 - Command Reference

Error Value Meaning
'@' 40h Reserved
'A' 41h No set available for this command
'B' 42h Unsupported in the firmware version
'C' 43h Illegal subcommand
'D' 44h Operand out of range
'E' 45h Invalid type
'F' 46h Fatal error condition exists
'G' 47h No query available for this command
'H' 48h Invalid Interrupt number
'I' 49h NVRAM failure
'J' 4ah Invalid address number
'K' 4bh Power-on self-test failed
‘L' 4ch Operation failed
'M' 4dh Measurement warning
'N' 4eh Measurement error

 Command Descriptions 77

Report ('B','b')

Function: Controls the timing characteristics of Touch packet reporting.

 0 1 2 3 4 5 6 7

Query: 'b'

Set or 0 1 2 3 4 5 6 7

Response: 'B' Untouch RepDelay

The Untouch byte specifies the number (0-15) of 10ms time increments to delay

before reporting an untouch condition. Increasing this value allows the controller

to filter out accidental untouches due to skips while sliding the finger. The factory

default value is 0 on AccuTouch controllers and 3 on the 2500S controller.

The RepDelay byte specifies a delay (0-255) in 10ms time increments between the

transmission of Touch packets. This is used to slow the output rate of the

controller without changing other filtering or interface characteristics such as the

baud rate. The factory default value is 2 on AccuTouch controllers and 1 on the

2500S controller.

78 Chapter 6 - Command Reference

Calibration ('C','c')

Function: Provides access to the on-board calibration facilities of the

controller.

Set Cal 0 1 2 & 3 4 & 5 6 7

by Range: 'C' AXIS LowPoint HighPoint

Query 0 1 2 3 4 5 6 7

Params: 'c' axis

Set Params/ 0 1 2 & 3 4 & 5 6 & 7

Response: 'C' axis Offset Numerator Denominator

Run Two 0 1 2 3 4 5 6 7

Point Cal: 'C' '2'

Set SwapFlag/ 0 1 2 3 4 5 6 7

Response: 'C' 'S' Enable

Query 0 1 2 3 4 5 6 7

SwapFlag: 'c' 'S'

Calibration can be performed by a host-driven calibration program or a controller-

driven calibration sequence. Calibration is discussed in the tutorial in Chapter 4,

and an example is given in Chapter 5.

The Calibration command has several functions:

Setting the Calibration Points Acquired by a Host-Driven Calibration
Program

Calibration is typically accomplished by a host-driven calibration program which

determines the raw touchscreen coordinates at the extremes of the display image.

These coordinates are then communicated to the controller, which converts them

into an internal Offset, Numerator, and Denominator format.

 Command Descriptions 79

AXIS specifies the coordinate axis to calibrate by using upper-case ASCII

characters 'X','Y', or 'Z'.

LowPoint and HighPoint are unsigned words specifying an axis range. For

example, if two calibration points are specified as (XLow,YLow) and

(XHigh,YHigh), LowPoint = XLow and HighPoint = XHigh for the X-axis. If a

HighPoint value is greater than a LowPoint value, hardware axis inversion is

performed.

Querying the Calibration Parameters

axis specifies the coordinate axis by using lower-case ASCII characters 'x','y', or

'z'. Calibration parameters are returned in the controller's internal Offset,

Numerator, and Denominator format. These values can be saved and later

restored directly in this format.

Note there is no way to directly query the LowPoint and HighPoint values. These

values can be calculated by the following formulas:

 LowPoint = Offset
 HighPoint = LowPoint + Denominator

Setting the Calibration Parameters as Offset, Numerator, and
Denominator

This command is used to restore calibration parameters previously queried from

the controller.

axis specifies the coordinate axis to calibrate by using lower-case ASCII

characters 'x','y', or 'z'.

Initiating a Controller-Driven Two-Point Calibration Sequence

(Not supported on the 2500S or future controllers.) The sequence of events is as

follows: The 'C2' command is sent to the controller. The controller responds with

an Acknowledge packet. The host should then display a target associated with a

0,0 coordinate and instruct the user to press the target. After the user presses the

target, the controller responds with another Acknowledge packet. The host should

then display a target associated with the XHighPoint,YHighPoint position and

instruct the user to press the target. Once this is accomplished, the controller

responds with a final Acknowledge packet and normal processing resumes. The

required calibration values are then calculated by the controller. The 'C2'

command temporarily disables the Calibration and Scaling Modes so raw data is

used for the two calibration points. The modes are automatically restored upon

exiting this procedure. If the host wishes to terminate the calibration procedure

80 Chapter 6 - Command Reference

prematurely, any command packet may be sent to the controller. This will

interrupt the sequence and an Acknowledge packet will be returned with a

"calibration terminated" warning.

Host-Driven Calibration Sequence

Alternatively, a host-driven calibration sequence may be performed. It must first

disable the Calibration and Scaling Modes, acquire the low and high calibration

points, transmit them to the controller with the CX and CY commands, then

restore the modes. Host-driven calibration sequences are more flexible in that

calibration points can be extrapolated to the edges, multiple samples acquired and

averaged, etc. For an example of a host-driven calibration sequence, see

EXAMPLE2.C, page 63.

Z-Axis Calibration

Z-axis calibration is typically not required as no Z data is available with

AccuTouch touchscreens. The controller defaults to 0-255, but always returns the

HighPoint value.

Z-axis calibration is supported on the IntelliTouch 2500S controller. It can be used

in combination with Trim mode to push in the extremes of the coordinate range

(see Mode command, page 96).

Setting or Querying the Swap Axes Flag

Swapped axes can be detected by a three-point host-driven calibration sequence.

This can correct inverted cabling or touchscreens rotated 90°. If the coordinates of

the third corner change in what should be the constant axis, then the axes are

swapped. The controller can then be informed to swap the axes through the Swap

Axes Flag. See EXAMPLE2.C, page 62.

Enable is a byte value where the least significant bit is 1 to swap axes or 0 for

normal operation.

Calibration and Axis Swapping are disabled by factory default.

 Command Descriptions 81

Diagnostics ('D','d')

Function: Runs the controller's on-board diagnostic routines, or queries the

results of those diagnostics.

 0 1 2 3 4 5 6 7

Query: 'd'

Set or 0 1 2 3 4 5 6 7

Response: 'D' MaskC MaskT

When the set Diagnostic command is sent to the controller, the MaskC and MaskT

bitmaps specify the individual tests to run. A 1 bit will run the corresponding test

while a 0 bit will skip the test. Exceptions to this rule are bits MaskC.7, MaskC.5,

MaskT.1, and MaskT.0 (see below). None of these bits has any effect in a set

command.

The results of the diagnostics are returned as a response packet before the

Acknowledge packet. MaskC and MaskT will have bits set where the corresponding

test failed and bits cleared where the tests passed or were not run.

The results of the previous diagnostics can be queried at any time. Since the

controller executes its on-board diagnostics at power-on, the results can be

queried without running them again.

MaskC byte has the following bit positions:

Bit Test Description

0 ID Test Checks to see that the firmware and hardware
are compatible.

1 CPU Test Exercises the CPU to verify that the instruction
set and registers are working.

2 ROM Test Verifies the checksum for the ROM.

3 RAM Test With AccuTouch controllers, performs an
extensive read/write RAM test. Checks for and
tests optional external RAM. Testing may take
up to 45 seconds depending on the memory
configuration of the controller. Test is ignored on

NOTE

This command does an implicit Query after a Set command is issued, retrieving

the results of the tests run by the Set.

82 Chapter 6 - Command Reference

Bit Test Description

IntelliTouch controllers.

4 NVRAM Test Verifies the checksum of the nonvolatile RAM.

5 Drive Test Verifies the touchscreen drive hardware. A
failure may indicate the touchscreen is not
connected.

6 CHOP Test If a controller expansion board is installed via
the controller's CHOP connector, this test allows
the expansion board to perform its diagnostics.

7 Drive Test Drive Test incomplete.

MaskT byte has the following bit positions:

Bit Test Description

0-2 Drive Test Checks to see that the firmware and hardware
are compatible.

3 ADC Test Tests the controller’s Analog to Digital
Converter.

4 PROM Test Verifies the checksum of the PROM.

5 External RAM
Test

Performs an extensive read/write test on
External RAM.

6 Internal RAM
Test

Performs an extensive read/write test on Internal
RAM.

7 CPU Test Always returns 0.

The three least significant bits of MaskT comprise the error code resulting from the

Drive Test (MaskC.5). This field is interpreted as a numeric value, and has the

following significance:

Bits Value Description

2-0 0 Test passed (this test always passes)

 1 X axis failure

 2 Y axis failure

 3 X receive channel failure

 4 Y receive channel failure

 5 X transmit channel failure

 6 Y transmit channel failure

 7 General failure—analog electronics and
touchscreen

 Command Descriptions 83

Note that upon running the tests, bits specified as zero in the test masks will cause

corresponding bits in the result to be set to zero. This will effectively mask any

failed values from previous tests.

84 Chapter 6 - Command Reference

Emulate ('E','e') - Serial Controllers Only

Function: Changes the output format of touch coordinates to that of other

serial touchscreen controllers. (Not supported on bus controllers or

the 2500S controller.)

 0 1 2 3 4 5 6 7

Query: 'e'

Set or 0 1 2 3 4 5 6 7

Response: 'E' TouchFlag Format

The SmartSet controllers can emulate other Elo controllers. Emulation can be

partial or full.

When Touch Packet Emulation is enabled, only the touch data output format is

changed to that of the selected controller (partial emulation). The SmartSet

controllers will still respond to the SmartSet command set when Touch Packet

Emulation is enabled. Other controller parameters may still be changed, such as

the Touch Mode and Scaling.

Full Emulation can only be selected through jumper settings (see page 15). In Full

Emulation Mode, the SmartSet controllers will not respond to SmartSet

commands. Instead, they will respond to the commands of the emulated controller

(if applicable).

TouchFlag is an ASCII value of '1' to include touch/untouch information in some

formats, and '0' to not include the information.

Format is a byte in the range of 0-7. ASCII '0' to ASCII '7' may also be used.

The following combinations of TouchFlag and Format specify the indicated

output formats. A page reference is given within Appendix A where the output

format is described.

TouchFlag Format Description Page
'0' '0' E271-140 Binary 114
'0' '1' E271-140 ASCII 115
'0' '2' E261-280 Binary* **
'0' '3' E261-280 ASCII* **
'0' '4' E271-22x0 Binary 49
'0' '5' E271-22x0 ASCII 114
'0' '6' E281-4002 Binary 114
'0' '7' E281-4002 ASCII 115
'1' '0' E271-140 Binary (same as '00') 114

 Command Descriptions 85

TouchFlag Format Description Page
'1' '1' E271-140 ASCII (Appends 'T' or 'U') 115
'1' '2' E261-280 Binary (81h flags untouch)* **
'1' '3' E261-280 ASCII (Appends 'T' or 'U')* **
'1' '4' E271-22x0 Binary (same as '04') 49
'1' '5' E271-22x0 ASCII (Appends 'T' or 'U') 114
'1' '6' E281A-4002 Binary (Z=0 on untouch) 114
'1' '7' E281A-4002 ASCII (Z=0 on untouch) 115

Partial Emulation is disabled by factory default (TouchFlag = '1', Format = '4').

* These formats force the axes scaling to be set from 2-255 to emulate the E261-

280 controller's protocol. Any scaling currently in use will be lost if one of these

formats is selected. Scaling Mode is also enabled automatically.

** No longer documented.

86 Chapter 6 - Command Reference

Filter ('F','f')

Function: Used to control various aspects of the firmware filtering algorithms

used in the controller.

 0 1 2 3 4 5 6 7

Query: 'f'

AccuTouch controllers:

Set or 0 1 2 3 4 5 6 7

Response: 'F' Type SLen Width States Control

IntelliTouch controllers:

Set or 0 1 2 3 4 5 6 7

Response: 'F' Type Rep Ofs MinLen MaxLen

The Type byte indicates the touchscreen type as follows: an ASCII '0' for

AccuTouch, '1' for DuraTouch, '2' for IntelliTouch, and '3' for CarrollTouch. The

Type field cannot be changed.

AccuTouch Filtering

The SLen byte specifies the number of coordinate samples (1-255) to average

before reporting the results. The factory default value is 4.

The Width byte specifies the allowable deviation (±1-255) in validating a touch

coordinate measurement. All touches within an averaging cycle (number specified

by SLen) must be within this specified window or the coordinate is discarded. The

factory default value is 32 for the E271-2210 controller and 8 for all other

controllers.

The States byte specifies the number (1-255) of valid touch detections (or

untouch detections) to signify a change in the state of the touch event. For

example, a value of 8 sets the state detection function to require that 8 contiguous

touch measurements be made to cause the controller to process an initial touch.

Similarly, 8 contiguous untouches must be measured to cause the controller to end

the touch event. The factory default is 8.

The Control byte comprises two 4-bit numeric values:

The high order 4 bits specify a touch-down detection threshold (0-15), related to

voltage. A value which is too low can cause the controller to report erroneous

 Command Descriptions 87

untouch coordinates. A value too high may prevent valid touches from being

recognized. The factory default value is 9.

The low order 4 bits specify the number of additional 0.5ms delays to use when

changing the drive signals to the touchscreen (0-15). A value of 0 specifies a delay

of 0.5ms, with each increment specifying an additional 0.5ms delay. The factory

default value is 1 for the E271-2210 controller and 0 for all other controllers.

IntelliTouch Filtering

The Rep word specifies the maximum number of times (1-65535) that a repeating

coordinate value is permitted to be measured by the controller. If the number of

times that a coordinate repeats in X, Y, and Z exceeds this value, then the

controller relearns the touchscreen waveform. This parameter determines the

tolerance of contaminants on the touchscreen. The factory default value is 12000

(2EE0h), which is 120 seconds.

The Ofs byte specifies the amount (0-255) of surface wave energy absorption that

is recognized as a touch. A small value increases touch sensitivity. A large value

increases noise rejection. The factory default value is 1.

The MinLen byte specifies the minimum width of a touch (0-255). As with the

previous argument, a small value increases the sensitivity and a large value

increases noise rejection. The factory default is 2.

The MaxLen byte specifies the maximum width of a touch (0-255). This parameter

controls the rejection of multiple touches and splattered contaminants. The factory

default is 22.

88 Chapter 6 - Command Reference

Configuration ('g')

Function: Requests a complete dump of the controller's configuration for

saving and restoring controller settings when switching between

applications.

 0 1 2 3 4 5 6 7

Query: 'g'

Set: This command cannot be set.

The order and number of packets returned may change in future revisions of the

controllers. Storage requirements may be queried with the ID command, (see page

90). The number of packets in the transfer is returned in the P byte.

The packets may be sent back to the controller as individual commands to restore

(set) all controller parameters.

 Command Descriptions 89

Timer ('H','h')

Function: Controls the User Timer functions of the controller. (Not supported

on the 2500S controller.)

 0 1 2 3 4 5 6 7

Query: 'h'

 0 1 2 3 4 & 5 6 7

Set: 'H' Enable TMode Interval

 0 1 2 3 4 & 5 6 & 7

Response: 'H' Enable TMode Interval Current

Enable is a byte value where the least significant bit is 1 to enable the Timer or 0

to disable the Timer. Timer packet transmission must also be Un-Quieted with the

Quiet command, described on page 106. The factory default for the Timer is

disabled.

The TMode byte determines the action taken upon the expiration of the Timer,

either One-shot or Continuous. If the least significant bit is 1 (Continuous Mode),

the Timer is automatically restarted using the specified Interval value. If it is 0

(One-shot Mode), the Timer is disabled when it expires. The factory default for

the TMode is One-shot.

The Interval word specifies the number of Timer ticks (in 10ms increments)

before the expiration of the Timer. The factory default is 100 (1 second).

The Current word contains zero when the Timer expires and a Timer packet is

sent to the host. If queried prior to expiration or while the Timer is Quieted,

Current will contain the amount of time remaining before expiration.

NOTE

Specifying an Interval of 0 (or 1 on slow computers) will flood the host with

Timer packets so that communication with the controller may become impossible.

90 Chapter 6 - Command Reference

ID ('i')

Function: Provides information about the controller and touchscreen.

 0 1 2 3 4 5 6 7

Query: 'i'

Set: This command cannot be set.

 0 1 2 3 4 5 6 7

Response: 'I' Type IO Features Minor Major P Class

The Type byte indicates the touchscreen type as follows: an ASCII '0' for

AccuTouch, '1' for DuraTouch, '2' for IntelliTouch, and '3' for CarrollTouch.

The IO byte indicates the type of communication interface that is in use by the

controller as follows: an ASCII '0' for serial, '1' for PC-Bus, '2' for Micro Channel,

'3' for ADB, and '4' for USB.

The Features byte indicates installed features of the controller and has the

following bit positions:

Bit Feature
0 Reserved
1 Reserved
2 Reserved
3 Reserved
4 External A/D converter
5 RAM is 32K bytes
6 RAM available
7 Z-axis available

The Minor byte reports the minor firmware revision level. The Major byte reports

the major firmware revision level. These bytes may be treated as an integer.

The P byte reports the number of packets to expect when querying the

configuration with the 'g' command, not including the Acknowledge packet that

follows. P may change with future firmware revisions.

The Class byte indicates the model of the controller as follows:

Value Controller
00h E271-2200
01h E271-2210
03h E281-2310
04h Reserved

 Command Descriptions 91

Value Controller
05h E281-2310B
06h 2500S
07h 2500U
08h 3000U
09h 4000U
0Ah 4000S
0Bh Reserved
0Ch Reserved
0Dh Reserved
0Eh COACh IIs™

E271-2210 vs. E271-2200 Controllers

The E271-2210 controller is software compatible with the obsolete E271-2200

with the following exceptions:

 Low Power Mode is not supported. See Low Power command, page 95.

 38,400 Baud is not supported. See Parameter command, page 102.

 Filtering parameters are slightly different. See Filter command, page 86.

92 Chapter 6 - Command Reference

Jumpers ('j')

Function: Returns the jumper settings on the controller.

 0 1 2 3 4 5 6 7

Query: 'j'

Set: This command cannot be set.

 0 1 2 3 4 5 6 & 7

Response: 'J' Type IO X1 X2 Bus1 Bus1 Bus

 0 1 2 3 4 5 6 7

Response: 'J' Type IO X1 X2 S1 S2 S3 Serial

The Type byte indicates the touchscreen type as follows: an ASCII '0' for

AccuTouch, '1' for DuraTouch, '2' for IntelliTouch, and '3' for CarrollTouch.

The IO byte indicates the type of communication interface that is in use by the

controller as follows: an ASCII '0' for serial, '1' for PC-Bus, '2' for Micro Channel,

'3' for ADB, and '4' for USB.

On AccuTouch controllers, the X1 Byte is an ASCII '0' if the controller's setup

jumper (J7) is present and the controller is booting from the jumper settings. It is a

'1' if the controller is booting from settings in NVRAM, and all jumper settings

are ignored. AccuTouch controllers are shipped jumpered to boot from jumpers

(J7 installed). The 2500S controller always boots from NVRAM.

On AccuTouch controllers, the X2 byte is an ASCII '0' if the controller is jumpered

for Single-Point Mode on power-on. It is a '1' for Stream Mode. AccuTouch

controllers are shipped jumpered for Stream Mode (J4 not installed). The 2500S

controller is shipped with Stream Mode configured in NVRAM.

On the 2500S controller, X1 and X2 are bitmaps specifying which option jumpers

are installed:

X1 Bit Position Description
0 Always ‘0’
1 J1 installed
2 J2 installed

X2 Bit position Description
0 Jumper cross-connects J0 to J1

 Command Descriptions 93

PC-Bus Controllers

The Bus1 byte indicates the Interrupt (IRQ) jumpered on a PC-Bus controller. A

zero value indicates no Interrupt is jumpered (Polled Mode). PC-Bus controllers

are shipped without an Interrupt jumpered.

The Bus2 integer indicates the Base I/O Port address jumpered on a PC-Bus

controller. PC-Bus controllers are shipped jumpered for address 280h.

Serial Controllers

The S1 byte indicates the jumper-selected baud rate as follows:

 Value Baud Rate
 00h 300
 01h 600
 02h 1200
 03h 2400
 04h 4800
 05h 9600
 06h 19200
 07h 38400

AccuTouch serial controllers are shipped jumpered for 9600 baud. The 2500S

controller is shipped with 9600 baud configured in NVRAM. The values for the

S1 byte correspond to those used in the Parameter command (page 102). Not all

of the above baud rates are available through jumper settings.

The S2 byte is an ASCII '0' if serial Hardware Handshaking is disabled by the J3

jumper on power-on. It is a '1' if Hardware Handshaking is enabled. AccuTouch

serial controllers are shipped jumpered for Hardware Handshaking enabled (J3 not

installed). The 2500S controller is shipped with Hardware Handshaking enabled

in NVRAM, and S2 is undefined.

The S3 byte is an ASCII '0' if the SmartSet ASCII Mode is selected on power-on

by the J2 jumper. A '1' indicates the SmartSet Binary Mode. AccuTouch serial

controllers are shipped jumpered for Binary Mode (J2 not installed). The 2500S

controller is shipped with Binary Mode enabled in NVRAM, and S2 is '1'.

94 Chapter 6 - Command Reference

Key ('K','k') - Serial Controllers Only

Function: Used to set or query the Key Byte value. The Key Byte may be

used for multiplexing multiple controllers on a common serial line.

(Not supported on the 2500S controller.)

 0 1 2 3 4 5 6 7

Query: 'k'

Set or 0 1 2 3 4 5 6 7

Response: 'K' KeyValue

The KeyValue byte may be from 1-255. A null value disables this function.

When the Key command is issued, the Acknowledge packet and all subsequent

packets will be in the new format.

Keyed packets are disabled by factory default.

Keyed packets are discussed on page 54.

 Command Descriptions 95

Low Power ('L','l')

Function: Controls the Low Power Mode of the controller. (Not supported on

the E271-2210 or 2500S controllers.)

 0 1 2 3 4 5 6 7

Query: 'l'

Set or 0 1 2 3 4 5 6 7

Response: 'L' Enable

During times when processing in the controller is minimal (no touch and no

communications in progress), the controller can enter a Lower Power Mode. Upon

receipt of data from the host or the event of a touch, the controller exits this mode

and normal processing continues until the next idle period. Low Power Mode is

useful with battery-powered computers.

The least significant bit of the Enable byte is 1 for Low Power Mode or 0 for

normal mode.

Low Power Mode is disabled by factory default.

96 Chapter 6 - Command Reference

Mode ('M','m')

Function: Sets the various operating modes of the controller.

 0 1 2 3 4 5 6 7

Query: 'm'

Set or 0 1 2 3 4 5 6 7

Response: 'M' 0 Mode1 Mode2

Alternate 0 1 2 3 4 5 6 7

Set: 'M' X X X X X X X

The Mode command offers two methods of setting the various operating modes.

The binary method uses two bitmapped bytes to set the mode. The binary method

is indicated by the presence of a null byte in position 1. The ASCII method uses a

string of ASCII letters to set the mode, useful if the controller is connected to a

terminal for evaluation purposes. Modes are discussed in the tutorial in Chapter 4.

The Mode1 byte has the following bit positions, corresponding to bit positions in

the Status byte in the Touch packet.

Bit Function Description

0 Initial Touch Mode If 1, a Touch packet will be transmitted on
initial touch. Bit 0 in the Status byte of the
Touch packet will be set indicating an Initial
touch.

1 Stream Mode If 1, Touch packets will be transmitted
continuously while the touchscreen is being
touched. Bit 1 in the Status byte of the Touch
packet will be set indicating Stream touches.
When Stream Mode is disabled, the controller
is in Single-Point Mode.

2 Untouch Mode If 1, a Touch packet will be transmitted on
untouch (release). Bit 2 in the Status byte of
the Touch packet will be set indicating an
Untouch.

3 Reserved

4 Warning Pending If 1, an Acknowledge query should be issued
to receive non-command-related warning(s).

 Command Descriptions 97

Bit Function Description

This bit is only valid on a Mode query.

5 Reserved

6 Range Checking If 1, Range Checking Mode is enabled. Bit 6
in the Status byte of the Touch packet will be
set indicating a touch is outside the calibration
points. Calibration Mode must also be
enabled (bit 2 of Mode2 below) and
Calibration Points set with the Calibration
command. Range Checking Mode is typically
combined with Trim Mode (bit 1 of Mode2
below). (Range Checking is not supported on
the 2500S controller.)

7 Z-axis Enabled If 1, Z-axis is Enabled, 0 for Disable. On
AccuTouch controllers, Z-axis is always
reported at maximum. 1 is the default for all
controllers.

The Mode2 byte has the following bit positions:

Bit Function Description

0 Reserved

1 Trim Mode If 1, Trim Mode is enabled. Touches outside
the calibration points will have their
coordinates adjusted to the edge of the
calibrated area. This mode effectively
expands all touch zones on the edge of the
image to include the associated overscan
area. Trim Mode requires Range Checking
Mode to be enabled (bit 6 of Mode1 above).

2 Calibration Mode If 1, Calibration Mode is enabled. Touch
coordinates will be mapped to the display
image using the calibration points acquired at
the edges of the image. Coordinates will be
scaled 0-4095 by default within the calibrated
area unless Scaling Mode (bit 3 below) is also
enabled and other Scaling Points defined.
Coordinates will be scaled beyond these
ranges if a touch is outside the calibration
points and Trim Mode is disabled. Calibration
Points must set with the Calibration
command.

98 Chapter 6 - Command Reference

Bit Function Description

3 Scaling Mode If 1, Scaling Mode is enabled. Touch
coordinates will be scaled to the signed
ranges specified with the Scaling command. If
Scaling Mode is disabled, coordinates will be
scaled 0-4095 by default. Scaling Mode is
typically used with Calibration Mode. Scaling
Mode may be used without Calibration Mode
to emulate coordinate ranges returned by
other controllers.

4 Reserved

5 Reserved

6 Tracking Mode If 1, Tracking Mode is enabled. In Tracking
Mode, Stream touches which repeat the
same coordinate will not be transmitted to the
host. This mode is only useful if coordinate
scaling is set below the natural variation of
coordinates for a constant touch. Tracking
Mode requires Stream Mode (bit 1 of Mode1
above). (Tracking Mode is not supported on
the 2500S controller.)

7 Reserved

The controller modes may also be configured with an ASCII packet (not

supported on current controllers). XXXXXX represents any of the following values

in string form.

 'I' Report Initial Touches
 'S' Report Stream Touches
 'U' Report Untouches
 'T' Enable Tracking Mode
 'P' Enable Trim Mode
 'C' Enable Calibration (automatic if 'P' selected)
 'M' Enable Scaling
 'B' Enable Range Checking (automatic if 'P' selected)

If an invalid character is present in the string, the remainder of the string is

ignored.

When the ASCII version of the Mode command is received, it starts by disabling

all modes and reporting options. The ASCII codes that follow then enable the

specified modes and reporting options. Because the XXXXXXX string may be a

maximum of 7 characters, and more than 7 modes are available, the 'P' character

also enables the Calibration and Range Checking Modes.

 Command Descriptions 99

If the Initial Touch, Stream, and Untouch Modes are disabled, no Touch packets

will be transmitted unless a Touch query is issued. See Touch command, page

110.

The factory default mode has Initial Touches, Stream Touches, and Untouches

enabled. The Single-Point Mode jumper (J4) disables Stream Touches and

Untouches when installed.

100 Chapter 6 - Command Reference

Nonvolatile RAM ('N')

Function: Saves/restores controller settings in the on-board nonvolatile

memory (NVRAM). NVRAM can be used to store power-on

defaults.

Query: This command cannot be queried.

 0 1 2 3 4 5 6 7

Set: 'N' Direction Areas Page

Power-on defaults are from NVRAM if the J7 jumper is installed. The use of

NVRAM is discussed on page 10 and in Chapter 4—SmartSet Tutorial.

The least significant bit of the Direction byte is 1 to save the settings in

NVRAM, or 0 to restore the settings from NVRAM.

The Areas byte has the following bit positions:

 Bit Area
 0 Setup Area
 1 Calibration
 2 Scaling

The Setup Area consists of all parameters except the Calibration and Scaling

parameters. All three areas may be saved or restored in any combination by setting

the appropriate bits.

The least significant bit of the Page byte is 0 for the primary area, or 1 for the

secondary area. The Page is only required if setting the Calibration or Scaling

parameters, as the controller only has one Setup Area.

Factory default settings in NVRAM are given in each command description.

 Command Descriptions 101

Owner ('o')

Function: Reserved for identifying custom firmware.

 0 1 2 3 4 5 6 7

Query: 'o'

Set: This command cannot be set.

 0 1 2 3 4 5 6 7

Response: 'O' 'E' 'l' 'o' 'I' 'n' 'c' '.'

The factory default value is shown above.

102 Chapter 6 - Command Reference

Parameter ('P','p')

Function: Changes controller communication parameters.

 0 1 2 3 4 5 6 7

Query: 'p'

Set or 0 1 2 3 4 & 5 6 7

Response: 'P' IO Bus1 Bus2 Bus

Set or 0 1 2 3 4 5 6 7

Response: 'P' IO Ser1 Ser2 Serial

When the parameters are set with this command, the Acknowledge packet is

returned using the new communication parameters. Therefore, the host

communication parameters must be changed immediately after issuing the

Parameter command.

The IO byte indicates the type of communication interface that is in use by the

controller as follows: an ASCII '0' for serial, '1' for PC-Bus, '2' for Micro Channel,

'3' for ADB, and '4' for USB. The IO cannot be changed. On a set command, it

must reflect the actual interface being used.

PC-Bus and Micro Channel Controllers

The Bus1 byte specifies the Interrupt number (IRQ) to use for bus

communications. A value of zero indicates Polled Mode.

The Bus2 integer specifies the Base I/O Port address for the controller. The Base

I/O Port address is always on an 8 byte boundary.

The factory defaults for PC-Bus controllers when booting from NVRAM are Base

I/O Port 280h and no Interrupt (polled). These defaults may be overridden if the

controller boots from jumper settings.

The Base I/O Port and Interrupt for Micro Channel controllers are selected by the

System Configuration routine on the IBM Reference Disk.

 Command Descriptions 103

Serial Controllers

(The 2500S controller does not support any of the following communication

parameter changes other than 9600 and 19200 baud settings.)

The Ser1 byte has the following bit definitions:

 Bit Description
 0 Baud Rate (see table below)
 1 Baud Rate (see table below)
 2 Baud Rate (see table below)
 3 0 = 8 bit data, 1 = 7 bit data
 4 0 = 1 stop bit, 1 = 2 stop bits
 5 1 = parity enabled as per bits 6 7
 6 Parity Type (see table below)
 7 Parity Type (see table below)

The Ser2 byte has the following bit definitions:

 Bit Description
 0 1 = Checksum required
 1 1 = Software Handshaking enabled
 2 1 = Hardware Handshaking enabled
 3 1 = Invert Hardware Handshaking
 4 Reserved
 5 Reserved
 6 Reserved
 7 1 = Full Duplex (echo enabled)

 Bits Baud Rate
 000 300
 001 600
 010 1200
 011 2400
 100 4800
 101 9600
 110 19200
 111 38400 (E271-2200 only)

 Bits Parity Type
 00 Even
 01 Odd
 10 Space
 11 Mark

104 Chapter 6 - Command Reference

Checksum Bit

If the Checksum Bit is 0, the controller does not check the validity of received

commands. If the Checksum Bit is 1, and the Checksum is incorrect in a received

command, error code '3' will be returned in the Acknowledge packet. Checksums

are always calculated and transmitted by the controller to the host. The host may

choose to ignore the Checksum or request the controller to retransmit corrupted

packets. See Checksum Byte, page 53.

Software Handshaking Bit

If the Software Handshaking Bit is 1, the controller will recognize the software

flow control convention of XON/XOFF (ASCII 'Control Q' and 'Control S').

If the Software Handshaking Bit is 0, software flow control is disabled. The

controller will not send ^S/^Q characters, and ^S/^Q characters received by the

controller outside a packet will generate an error.

Software Handshaking is disabled by factory default. For more information, see

Software Handshaking, page 55.

Hardware Handshaking Bit

If the Hardware Handshaking Bit is 1, the controller will support hardware

handshake signals typically implemented in EIA RS-232 communications.

Hardware Handshaking is enabled by factory default. To ease troubleshooting of

the initial installation, jumper J3 can be installed to force the controller to ignore

Hardware Handshaking. For more information, see Hardware Handshaking, page

55.

Invert Hardware Handshaking Bit

If the Invert Hardware Handshaking Bit is 1, the senses of the handshaking signals

are inverted (except DSR). This feature is provided as a tool for use in

installations where the controller may be forced to share a serial link with another

device.

Hardware Handshaking is not inverted by factory default.

Full-Duplex Bit

If the Full-Duplex Bit is 1, each character sent to the controller is echoed. When

Half-Duplex Mode is selected (Full-Duplex Bit is 0), the controller does not

retransmit each received character.

 Command Descriptions 105

The factory default is Half-Duplex. For more information, see Duplex, page 56.

Other Communication Parameters

Setting the controller to 7-Bit Mode will make many commands unusable. As the

SmartSet command set requires 8-bit binary data, 7-Bit Mode can only be used

when the controller is in a Partial Emulation Mode and is transmitting ASCII data.

The total number of serial bits must be between 7 and 10 inclusive. For example,

8 Data Bits, 2 Stop Bits, and Even Parity is illegal.

The factory defaults for serial controllers when booting from NVRAM are 9600

Baud, 8 Data Bits, 1 Stop Bit, No Parity, normal Hardware Handshaking enabled,

Software Handshaking disabled, Half Duplex, and correct Checksum not required.

The Baud Rate and Hardware Handshaking options may be overridden if the

controller boots from jumper settings.

106 Chapter 6 - Command Reference

Quiet ('Q','q')

Function: Used to enable/disable automatic reporting of certain types of

information from the controller. (Not supported on the 2500S

controller.)

 0 1 2 3 4 5 6 7

Query: 'q'

Set or 0 1 2 3 4 5 6 7

Response: 'Q' QMask

The QMask byte specifies what packet types are to be enabled or Quieted (disabled

from automatic reporting). The QMask byte has the following bit positions:

 Bit Function

 0 Set to Quiet all outputs. In this mode, commands are not
acknowledged but are processed. Commands cannot be
queried either.

 A Quiet-all command is not followed by an Acknowledge
packet. With serial controllers, the host must wait for CTS to
be asserted before sending another command. On PC-Bus
and Micro Channel controllers, the Base I/O Port is 80h
while the reset is being performed. The host must poll the
Base I/O Port for C1h (ASCII 'A' plus the Not Ready Bit)
before sending another command.

 A Quiet-all command should be issued when finished using
the E271-2202 Micro Channel controller so others may
locate and use it through the POS registers. See BUS.C,
page 70.

 1 Set to Quiet Timer packets.

 2 Set to Quiet Touch reports. No touch detection occurs,
conserving power.

Touch and Timer packets are Quieted by factory default on PC-Bus and Micro

Channel controllers. This prevents bus controllers from generating interrupts

before the host software is ready to accept them.

Touch and Timer packets are not Quieted by factory default on serial SmartSet

controllers. This allows serial controllers to be used with one-way communication

only.

 Command Descriptions 107

Reset ('R')

Function: Performs a soft or hard reset of the controller.

Query: No query is available.

 0 1 2 3 4 5 6 7

Set: 'R' RType

Response: There is no response available.

RType is one of the ASCII values '0', ‘1’and '2' and is used to specify the type of

reset to use. If RType is ‘0’ then a "hard" reset (cold boot) will occur. If RType is

‘1’ then a "soft" reset (warm boot) will occur. Additionally on the 2500S

controller, if RType is ‘2’, then a hard reset occurs, and the NVRAM is reset to its

default values (the internal serial number is not modified).

A Hard Reset causes the controller to reboot according to either the jumpers or the

NVRAM, with AccuTouch controllers depending on the state of the setup jumper

J7. Any software setup information in the controller which has not been saved to

NVRAM will be lost.

On the AccuTouch controllers, a Soft Reset merely restarts the firmware and

clears the output buffer. No diagnostics are run and no controller parameters are

affected.

On the 2500S controller, a Soft Reset works like a Hard Reset with the exception

that the diagnostics are not run. Any software setup information in the controller

which has not been saved to NVRAM will be lost.

The 'R0' and 'R2' commands are not followed by an Acknowledge packet. With

serial controllers, the host must wait for CTS to be asserted before sending

another command. This may take about 5 seconds. On PC-Bus and Micro Channel

controllers, the Base I/O Port is 80h while the reset is being performed. The host

must poll the Base I/O Port for C1h (ASCII 'A' plus the Not Ready Bit) before

sending another command.

108 Chapter 6 - Command Reference

Scaling ('S','s')

Function: Provides access to the on-board coordinate scaling facilities of the

controller.

Set Scale 0 1 2 & 3 4 & 5 6 7

by Range: 'S' AXIS LowPoint HighPoint

Query 0 1 2 3 4 5 6 7

Params: 's' axis

Set Params/ 0 1 2 & 3 4 & 5 6 & 7

Response: 'S' axis Offset Numerator Denominator

Set Axis

Inversion/ 0 1 2 3 4 5 6 7

Response: 'S' 'S' IMask

Query 0 1 2 3 4 5 6 7

Inversion: 's' 'S'

Scaling is discussed in the tutorial in Chapter 4, and an example is given in

Chapter 5.

The Scaling command has several functions:

Setting the Scaling Points from the Host

Scaling is accomplished by the host transmitting a range of coordinates, typically

equivalent to the display resolution. These coordinates are then converted by the

controller into an internal Offset, Numerator, and Denominator format.

AXIS specifies the coordinate axis to be scaled by using upper-case ASCII

characters 'X','Y', or 'Z'.

LowPoint and HighPoint are signed integers specifying an axis range. For

example, if two scaling points are specified as (XLow,YLow) and

(XHigh,YHigh), LowPoint = XLow and HighPoint = XHigh for the X-axis. If a

HighPoint value is greater than a LowPoint value, software axis inversion is

performed.

 Command Descriptions 109

Querying the Scaling Parameters

axis specifies the coordinate axis by using lower-case ASCII characters 'x','y', or

'z'. Scaling parameters are returned in the controller's internal Offset, Numerator,

and Denominator format. These values can be saved and later restored directly in

this format.

Note there is no way to directly query the LowPoint and HighPoint values. These

values can be calculated by the following formulas:

 LowPoint = Offset
 HighPoint = LowPoint + Numerator

Setting the Scaling Parameters as Offset, Numerator, and Denominator

This command is used to restore scaling parameters previously queried from the

controller.

axis specifies the coordinate axis to be scaled by using lower-case ASCII

characters 'x','y', or 'z'.

Z-Axis Scaling

On AccuTouch touchscreen controllers, Z-axis scaling is typically not required as

no Z data is available. The controller defaults to 0-255, but always returns the

HighPoint value.

Z-axis scaling is supported on the IntelliTouch 2500S controller.

Setting or Querying the Invert Axes Flags

Axes may be inverted by using these flags, or preferably, by swapping the

LowPoint and HighPoint scaling values.

IMask is a byte value where the least significant 3 bits specify which axes to

invert as follows:

 Bit Axis
 0 Invert X Axis
 1 Invert Y Axis
 2 Invert Z Axis

Scaling and Axis Inversion are disabled by factory default.

110 Chapter 6 - Command Reference

Touch ('t')

Function: The touch coordinate reporting packet.

 0 1 2 3 4 5 6 7

Query: 't'

Set: This command cannot be set.

 0 1 2 & 3 4 & 5 6 & 7

Response: 'T' Status X Y Z

(The query function is not supported on the 2500S controller.)

On serial controllers, the response may be altered if Partial Emulation is selected

with the Emulate command (see page 82).

Touch packets are generated automatically if Touch Reporting is enabled with the

Quiet command. This is the default with serial controllers.

If automatic touch reporting is disabled by disabling Initial Touch, Stream, and

Untouch Modes (see Mode command, page 96), the Touch command may be used

to query for touch data. This feature is used primarily with multiple serial

controllers sharing a serial line with keyed packets. See Key Byte, page 54.

The coordinates of the touch are signed numbers reported in the X, Y, and Z

integers. The Z coordinate is always set to the maximum Calibration or Scaling

value (default is 255).

The Status byte has the following bit positions. Touch packets will only be

transmitted with the various bits set if the corresponding mode is enabled with the

Mode command.

Bit Status Description

0 Initial Touch If 1, the Touch packet is for an Initial touch.
Initial Touch Mode is enabled by bit 0 in the
Mode1 byte of the Mode command.

1 Stream Touch If 1, the Touch packet is for a Stream touch,
a coordinate transmitted continuously while
the touchscreen is being touched. Stream
Mode is enabled by bit 1 in the Mode1 byte
of the Mode command.

2 Untouch If 1, the Touch packet is for the point of
untouch (when the finger is lifted). Untouch

 Command Descriptions 111

Bit Status Description

Mode is enabled by bit 2 in the Mode1 byte
of the Mode command.

3 Reserved

4 Warning(s) Pending If 1, an Acknowledge query should be
issued to receive non-command-related
warning(s).

5 Reserved

6 Out of Range If 1, the Touch packet is outside the
Calibration Points. Range Checking Mode is
enabled by bit 6 in the Mode1 byte of the
Mode command. (Range Checking is not
supported on the 2500S controller.)

7 Z-axis Supported If 1, the Z coordinate is measured, not
simulated at the maximum value.

112 Chapter 6 - Command Reference

113

Appendix A

Optional Software Protocols

 E271-2210 Controller 113

 2500S Controller 116

 E271-2201 Controller 116

E271-2210 CONTROLLER

The E271-2210 controller can be jumpered or configured with software setup for

optional software protocols. Emulation can be full or partial.

If J2 is jumpered for ASCII Mode, the standard Touch packet is replaced with the

SmartSet ASCII Mode packet, described in the following section. All other

communication remains the same.

If J10 and J11 are jumpered to select an Emulation Mode, (full emulation), the

controller will no longer respond to the SmartSet protocol. (See page 15.) When

emulating the AccuTouch E271-140, IntelliTouch E281A-4002 controller, or the

DuraTouch E261-280 controller, only one-way communication is possible.

When E271-140 emulation is jumpered, the TouchFlag in the Emulate command

is forced to 0. When E281A-4002 emulation is jumpered, Z-axis scaling is

enabled, with a constant value of 15 being returned. When E261-280 emulation is

jumpered, the scaling range is set to 2-255, and Scaling, Range Checking, and

Trim Modes are enabled. All other jumpers and NVRAM settings, (except the

Key byte), remain available within each emulation mode.

114 Appendix A - Optional Software Protocols

The controllers may also be programmed through software setup for Output

Format Emulation (partial emulation). In this mode, the controller will still

respond to the SmartSet protocol, but the Touch packet will be replaced with a

packet defined by the selected output format. See the Emulate command, page 84,

for details on selecting the output format.

Emulation modes are only documented here for purposes of completeness. It is

not recommended that new applications use an emulation mode, as the controller

being emulated may no longer be manufactured by Elo. Backwards compatibility

can not be guaranteed indefinitely.

In the following sections describing each protocol, jumper settings are given

followed by the equivalent TouchFlag and Format values for the Emulate

command. For example, J2-Y, J10-N, J11-N; 0/1,5.

SmartSet ASCII Mode

In this mode, coordinate data is formatted as three ASCII decimal numbers for X,

Y, and Z. The range of the coordinates is determined by the calibration and

scaling options of the controller. Coordinate values of less than 1000 are padded

with leading zeroes so each number will have at least four digits. Scaling may

require the addition of an additional digit for values greater than 9999. Scaling

may also add a leading minus sign ("-"). Plus signs are suppressed.

The Z coordinate is followed by an optional status indicator. A "T" indicates

initial or stream touch, a "U" indicates untouch. In the example below, optional

characters are underlined.

 <->XXXXX<space><->YYYYY<space><->ZZZZZ<space><T|U><CR><LF>

E271-140 and E281A-4002 Emulation

Binary Output Data

Transmission of a single touch packet in Binary Mode requires 4 bytes, or 6 bytes

if Z data is enabled in E281A-4002 mode. The beginning of a packet is uniquely

identified by the two most significant bits being 1.

Z-Data Disabled (E271-140 Mode) J2-N, J10-Y, J11-N; 0,0

Byte MSB LSB
1 1 1 X11 X10 X9 X8 X7 X6
2 1 0 X5 X4 X3 X2 X1 X0
3 0 1 Y11 Y10 Y9 Y8 Y7 Y6
4 0 0 Y5 Y4 Y3 Y2 Y1 Y0

J2-Y, J10-N, J11-N; 0/1,5

 E271-2210 Controller 115

Z-Data Enabled (E281A-4002 Mode) J2-N, J10-N, J11-Y; 0/1,6

Byte MSB LSB
1 1 1 X11 X10 X9 X8 X7 X6
2 1 0 X5 X4 X3 X2 X1 X0
3 0 1 Y11 Y10 Y9 Y8 Y7 Y6
4 0 0 Y5 Y4 Y3 Y2 Y1 Y0
5 0 0 Z11 Z10 Z9 Z8 Z7 Z6
6 0 0 Z5 Z4 Z3 Z2 Z1 Z0

Since the Z coordinate is only a 4-bit number, bit positions Z11-Z4 will be 0. This

includes all of byte 5.

If jumpered for E281A-4002 emulation mode, or TouchFlag is 1, the Z value will

be zero on untouch.

After a driver receives a complete packet, it typically masks off the upper two bits

by logically ANDing each byte with 3Fh, shifts the most significant byte of each

coordinate left 6 bits, then ORs it with the least significant byte.

ASCII Output Data

Transmission of a single touch packet in ASCII Mode requires 11 bytes, or 16

bytes if Z data is enabled. The packet is identified by leading carriage return and

line feed characters. The coordinates are separated by a space character. The

coordinate range may be for 0 to 9999.

Z Data Disabled without Untouch Flag (E271-140 Mode)
J2-Y, J10-Y, J11-N; 0,1

 <CR><LF>XXXX YYYY

Z Data Disabled with Untouch Flag (E271-140 Mode) N/A; 1,1

 <CR><LF>XXXX YYYY <T|U>

Z Data Enabled without Untouch Flag (E281-4002 Mode) N/A; 0,7

 <CR><LF>XXXX YYYY ZZZZ

Z Data Enabled with Untouch Flag (E281A-4002 Mode)
J2-Y, J10-N, J11-Y; 1,7

 <CR><LF>XXXX YYYY ZZZZ

The Z value is zero on untouch.

116 Appendix A - Optional Software Protocols

E261-280 Emulation

Output Formats

The E271-2210 controller supports a variety of E261-280 output formats,

including ASCII or Binary, Single-Point or Stream Mode, and untouch reporting.

The default depends on the Output Format and Mode jumpers, J2 and J4

respectively. The Untouch Flag is included by default.

Software Setup

The E271-2210 SmartSet controller does not support software setup when in

E261-280 emulation mode.

2500S CONTROLLER

E281A-4002 Emulation

The 2500S controller can be jumpered for emulation of the E281A-4002

controller with J2 in Binary Mode with Z data enabled. See page 114 for details of

the protocol. In Emulation Mode, the controller will no longer respond to the

SmartSet protocol.

E271-2201 CONTROLLER

When selecting an Emulation Mode, all other jumpers and NVRAM settings are

still available.

E271-141 Emulation

I/O Port Assignments

When in emulation mode, the E271-2201 only has four registers available for

communication with the host processor. Each register is addressed by its offset

from the Base I/O Port address as selected by jumpers J0 and J1 (see Selecting the

Base I/O Port, page 18). The functions and formats of these registers are defined

below:

Base Port
 8-Bit Mode Contains the X coordinate
 12-Bit Mode Contains the high-order byte of the X or Y coordinate

 E271-2201 Controller 117

Base Port+1
 8-Bit Mode Contains the Y coordinate
 12-Bit Mode Contains the low-order byte of the X or Y coordinate

Base Port+2
 Contains controller status as defined below:

 Bit Hex
 0 01 1 = 8-Bit Mode 0 = 12-Bit Mode
 1 02 always 0
 2 04 1 = Stream Mode 0 = Single-Point Mode
 3 08 always 0
 4 10 always 0
 5 20 always 0
 6 40 1 = X data 0 = Y data
 7 80 1 = data ready 0 = not ready

Base Port+3
 Not supported.

Coordinate Data Format

The coordinate data is formatted as follows:

8-Bit Mode
two-byte transfer
Base Port XXXX XXXX X coordinate data
Base Port+1 YYYY YYYY Y coordinate data

12-Bit Mode
first two-byte transfer
Base Port XXXX XXXX X high order byte
Base Port+1 XXXX 0000 X low order byte
second two-byte transfer
Base Port YYYY YYYY Y high order byte
Base Port+1 YYYY 0000 Y low order byte

Polled vs. Interrupt Mode

The host processing can be performed by polling the controller or by using

interrupts when in E271-141 emulation mode. Polling consists of constantly

checking the status of the controller for data to become ready, and then retrieving

that data. Polled or Interrupt Mode is selected by jumpers J2 and J3 (see Selecting

the Interrupt (IRQ), page 19).

NOTE

The 8-bit data is the same as the highest-order 8 bits of the 12-bit data.

118 Appendix A - Optional Software Protocols

Polling Considerations

In Polled Mode, bit 7 (data ready) of the emulated status register (see page 116)

must be checked continuously. If it is a 1, the data registers contain the

coordinates of a touch and can be read. If it is a 0, no data is ready.

Bit 0 of the status register indicates whether the controller is in 8 or 12-Bit Mode.

A 1 indicates 8-Bit Mode; a 0 indicates 12-Bit Mode.

In 8-Bit Mode, a single two-byte transfer will read both the X and Y coordinates.

The application program must read X before Y because reading Y signals the

controller to transmit new data as soon as it becomes available.

In 12-Bit Mode, two separate two-byte transfers are required to read the X and Y

coordinates. The first two-byte transfer returns the high and low-order bytes of X.

You must poll a second time to obtain the second two-byte transfer, which returns

the high and low-order bytes of Y. Bit 6 of the status register indicates whether X

or Y is being read. If bit 6 is 1, it is X data; if it is 0, Y data. In both cases, you

must read the high-order byte before the low-order byte because reading the low-

order byte signals the controller to transmit new data as soon as it becomes

available.

Polled Programming Example

The following program polls the E271-2201 controller in E271-141 emulation

mode. The code supports both 8 and 12-Bit Modes.

Here is typical output:

C:>bpgettch

Touch screen for polled coordinate output.

Press any key to abort...

X=1408 Y=1104

X=1424 Y=1120

X=1424 Y=1136

X=1440 Y=1152

X=1456 Y=1152

X=1456 Y=1136

X=1440 Y=1120

X=1424 Y=1136

X=1408 Y=1120

X=1408 Y=1136

X=1424 Y=1152

And here is the program:

/**

BPGETTCH.C Poll bus controller for touch data

***/

#include <stdio.h>

#include <conio.h>

typedef int boolean;

typedef unsigned char byte;

#define FALSE 0

#define TRUE !FALSE

#define BASEPORT 0x280 /* as jumpered on card */

struct bufferentry { /* touch data structure */

 E271-2201 Controller 119

 byte data[6]; /* serial data */

} point;

boolean gettouch(int *x, int *y);/* returns coordinate data */

boolean packet(void); /* polls controller for data */

void main(void)

{

 int x, y;

 printf("Touch screen for polled coordinate output.\n");

 printf("Press any key to abort...\n");

 do /* poll controller for touch and display if data available */

 if (gettouch(&x, &y))

 printf("X=%4d Y=%4d\n", x, y);

 while (!kbhit()); getch();

}

boolean gettouch(int *x, int *y)

{

/* Poll controller for data. Return valid data if found. */

 byte s;

 if (!packet())

 return(FALSE); /* no data */

 s = (byte)inp(BASEPORT+2); /* get controller status */

 if (s & 0x01) { /* 8 bit mode */

 *x = point.data[0] << 4;

 *y = point.data[1] << 4;

 return(TRUE);

 }

 else { /* 12 bit mode */

 *x = (point.data[0] << 4) | (point.data[1] >> 4);

 *y = (point.data[2] << 4) | (point.data[3] >> 4);

 return(TRUE);

 }

}

boolean packet(void)

{

/* poll controller for data */

 byte s;

 boolean dataaquired = FALSE;

 do {

 s = (byte)inp(BASEPORT+2); /* get controller status */

 if (s < 0x80) { /* data not ready */

 if (s & 0x20) /* resync necessary (if E271-141 controller) */

 s = (byte)inp(BASEPORT+1); /* resync controller */

 return(FALSE);

 }

 else if (s & 0x01) { /* 8 bit mode */

 point.data[0] = (byte)inp(BASEPORT); /* get X... */

 point.data[1] = (byte)inp(BASEPORT+1); /* and Y */

 dataaquired = TRUE;

 do ; while (inp(BASEPORT+2) >= 0x80); /* wait for not ready */

 }

 else if (s & 0x40) { /* 12 bit mode Get X */

 point.data[0] = (byte)inp(BASEPORT); /* X high */

 point.data[1] = (byte)inp(BASEPORT+1); /* X low */

 do ; while ((inp(BASEPORT+2) & 0x40) == 0x40); /* wait for X bit to clear

*/

 } /* re poll before reading Y */

 else { /* get Y */

 point.data[2] = (byte)inp(BASEPORT); /* Y high */

 point.data[3] = (byte)inp(BASEPORT+1); /* Y low */

 dataaquired = TRUE;

 do ; while ((inp(BASEPORT+2) & 0xc0) == 0x80); /* wait for not ready or X

bit */

 }

 } while (!dataaquired);

 return(TRUE);

}

120 Appendix A - Optional Software Protocols

121

Appendix B

Calibration and Scaling

Algorithms

Typically, SmartSet controllers are setup through software and/or NVRAM to

supply the host with calibrated and scaled touch coordinates, as described in

Chapter 5. If you cannot set up the controller with this procedure, you will receive

raw coordinates from the controller. The host software must then map these

coordinates within the calibration range (defining the position and size of the

screen image) and scaled into screen coordinates, such as 80x25. These

operations can be performed with the formula given below. (For more information

on calibration and scaling, see the tutorial in Chapter 4).

Figure 4-5, page 44, shows a bezel opening and the position of an image within it.

The touchscreen extends beyond the image into the overscan area, which is

inaccessible to a program. The points at the extremes of the image are given two

names, one in raw coordinates (denoted by "R") and one in screen coordinates

(denoted by "S"). Low points may be greater than high points and vice versa -- the

formula works with any orientation. The point of touch to be converted will be at

the "+". It is also given two names: Cx,Cy for the raw coordinates, and X,Y for

the screen coordinates.

The coordinates at the corners of the image are obtained by a calibration program

that you write. See Chapter 5 for an example. This program simply outputs a point

near one corner, lets the user touch it, then repeats the process near the opposite

corner. These points are then extrapolated to the actual corners of the image, to

reduce the effects of non-linearities in the display image. The calibration program

stores the raw coordinates for each corner in a file. The driver or application you

write will later load these points and use them in the conversion formula.

122 Appendix B - Calibration and Scaling Algorithms

The screen coordinates in our example will be from 1 to 80 in X, and 1 to 25 in Y.

Therefore, Sxlow=1, Sxhigh=80, Sylow=1, and Syhigh=25. Any coordinate

scaling may be used, such as 0 to 99999 or -10 to 10.

The conversion process must be performed for both X and Y, but for simplicity,

we will only give the formula in X:

 X = (Sx(Cx-Rxlow)/Rx) + Sxlow

where:

 Cx is the raw coordinate at "+" in the X-axis.

 X is the translated coordinate at "+" in screen coordinates.

 Rx = Rxhigh - Rxlow (range of raw calibration coordinates).

 Sx = Sxhigh - Sxlow (range of screen coordinates, e.g. 79 = 80-).

This algorithm can be computed with integer arithmetic if you do the following:

1. Do the multiply Sx(Cx-Rxlow) before dividing by Rx. Rx and Sx can be

pre-computed to improve performance, but Sx/Rx will likely be zero if pre-

computed because Sx may be smaller than Rx.

2. To adjust for slight rounding errors introduced in integer arithmetic, add a

rounding constant to the formula:

 X = (Sx(Cx-Rxlow+(Rx/2Sx))/Rx) + Sxlow

 The rounding constant may be pre-computed.

Other notes:

1. Touches outside the calibration range may be pushed just inside before the

conversion is performed, (equivalent of Trim Mode), although add the

rounding constant first. This effectively enlarges any touch zones at the edge

of the image. It also insures coordinates will always be in the desired range.

For example:

 IF Cx < Rxlow THEN Cx := Rxlow

 ELSE IF Cx > Rxhigh THEN Cx := Rxhigh;

2. The calibration points should not appear anywhere inside your application

program. By loading them at run time, your application is kept touchscreen

and controller independent.

3. The above formula works with signed numbers. This means that if your

touchscreen is installed upside down, while Ry may be negative, the

translated coordinates will still be as expected. Also, if you wish to invert the

 E271-2201 Controller 123

X-axis for example, just specify a Sxhigh that is less than Sxlow, such as 80 to

1.

4. If you prefer the default origin in the lower left for example, just make the low

calibration point be in the lower left, and the high in the upper right. As you

can see, the formula allows any origin, axis orientation and scaling,

independent of the touchscreen and controller.

5. A third calibration point may be added to detect swapped axes. If the

coordinates of the third corner change in what should be the constant axis,

then the axes are swapped. See EXAMPLE2.C, page 63.

124 Appendix B - Calibration and Scaling Algorithms

125

Appendix C

Specifications

This appendix has been removed. For the most up-to-date touchscreen and

controller specifications, see www.elotouch.com.

